Temperature Dependence of Electrical Properties of NiO Thin Films for Resistive Random Access Memory

2008 ◽  
Vol 1071 ◽  
Author(s):  
Ryota Suzuki ◽  
Jun Suda ◽  
Tsunenobu Kimoto

AbstractTemperature dependence of electrical properties in NiO thin films for ReRAM applications has been investigated. I-V measurements have been carried out in the temperature range from 100K to 523K. The resistance in the high resistance state (HRS) is almost independent of temperature below 250K, whereas it decreases with an activation energy of 300 meV above 250K. Hopping conduction and band conduction may be dominant in the low- and high-temperature range, respectively. Admittance spectroscopy on the NiO/n+-Si structure¡¡reveals the existence of a high density of traps, which may contribute to the conduction in HRS. In the low resistance state (LRS), however, the resistance slightly increased in the whole temperature range and the trend is similar to that of metallic Ni film, indicating the metallic Ni defects is related to the conduction in LRS. The Pt/NiO/Pt structure demonstrated stable resistance switching even at temperature as high as 250°C or higher. Since other competitive nonvolatile memories will face severe difficulty in high-temperature operation, the present ReRAM shows promise for high-temperature application.

2007 ◽  
Vol 124-126 ◽  
pp. 603-606
Author(s):  
Sang Hee Won ◽  
Seung Hee Go ◽  
Jae Gab Lee

Simple process for the fabrication of Co/TiO2/Pt resistive random access memory, called ReRAM, has been developed by selective deposition of Co on micro-contact printed (μ-CP) self assembled monolayers (SAMs) patterns. Atomic Layer Deposition (ALD) was used to deposit TiO2 thin films, showing its ability of precise control over the thickness of TiO2, which is crucial to obtain proper resistive switching properties of TiO2 ReRAM. The fabrication process for Co/TiO2/Pt ReRAM involves the ALD of TiO2 on sputter-deposited Pt bottom electrode, followed by μ-CP with SAMs and then selective deposition of Co. This results in the Co/TiO2/Pt structure ReRAM. For comparison, Pt/TiO2/Pt ReRAM was produced and revealing the similar switching characteristics as that of Co/TiO2/Pt, thus indicating the feasibility of Co replacement with Pt top electrode. The ratios between the high-resistance state (Off state) and the low-resistance state (On state) were larger than 102. Consequently, the selective deposition of Co with μ-CP, newly developed in this study, can simplify the process and thus implemented into the fabrication of ReRAM.


2020 ◽  
Vol 34 (12) ◽  
pp. 2050115
Author(s):  
Liping Fu ◽  
Sikai Chen ◽  
Zewei Wu ◽  
Xiaoyan Li ◽  
Mingyang You ◽  
...  

Sneak current issue of RRAM-based crossbar array is one of the biggest hindrances for high-density memory application. The integration of an addition selector to each cell is one of the most familiar solutions to avoid this undesired cross-talk issue, and resistive switching parameters would affect on the storage density. This paper investigates the potential impact of different resistive switching parameters on crossbar arrays with one-diode one-resistor (1D1R) and one-selector one-resistor (1S1R) architectures. Results indicate that 1S1R architecture is a more scalable technology for high-density crossbar array than 1D1R, and the storage density of 1D1R- and 1S1R-based crossbar array shows little dependence on resistance values of high-resistance state and low-resistance state, which gives a guideline for choosing appropriate selectors for RRAM crossbar array with specific parameters.


2015 ◽  
Vol 15 (10) ◽  
pp. 7569-7572 ◽  
Author(s):  
Sukhyung Park ◽  
Kyoungah Cho ◽  
Jungwoo Jung ◽  
Sangsig Kim

In this study, we demonstrate the enhancement of the nonlinear resistive switching characteristics of HfO2-based resistive random access memory (ReRAM) devices by carrying out thermal annealing of Al2O3 tunnel barriers. The nonlinearity of ReRAM device with an annealed Al2O3 tunnel barrier is determined to be 10.1, which is larger than that of the ReRAM device with an as-deposited Al2O3 tunnel barrier. From the electrical characteristics of the ReRAM devices with as-deposited and annealed Al2O3 tunnel barriers, it reveals that there is a trade-off relationship between nonlinearity in low-resistance state (LRS) current and the ratio of the high-resistance state (HRS) and the LRS. The enhancement of nonlinearity is attributed to a change in the conduction mechanism in the LRS of the ReRAM after the annealing. While the conduction mechanism before the annealing follows Ohmic conduction, the conduction of the ReRAM after the annealing is controlled by a trap-controlled space charge limited conduction mechanism. Additionally, the annealing of the Al2O3 tunnel barriers is also shown to improve the endurance and retention characteristics.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1124 ◽  
Author(s):  
Chao-Feng Liu ◽  
Xin-Gui Tang ◽  
Lun-Quan Wang ◽  
Hui Tang ◽  
Yan-Ping Jiang ◽  
...  

The resistive switching (RS) characteristics of flexible films deposited on mica substrates have rarely been reported upon, especially flexible HfO2 films. A novel flexible Au/HfO2/Pt/mica resistive random access memory device was prepared by a sol-gel process, and a Au/HfO2/Pt/Ti/SiO2/Si (100) device was also prepared for comparison. The HfO2 thin films were grown into the monoclinic phase by the proper annealing process at 700 °C, demonstrated by grazing-incidence X-ray diffraction patterns. The ratio of high/low resistance (off/on) reached 1000 and 50 for the two devices, respectively, being relatively stable for the former but not for the latter. The great difference in ratios for the two devices may have been caused by different concentrations of the oxygen defect obtained by the X-ray photoelectron spectroscopy spectra indicating composition and chemical state of the HfO2 thin films. The conduction mechanism was dominated by Ohm’s law in the low resistance state, while in high resistance state, Ohmic conduction, space charge limited conduction (SCLC), and trap-filled SCLC conducted together.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 947 ◽  
Author(s):  
Seunghyun Ha ◽  
Hyunjae Lee ◽  
Won-Yong Lee ◽  
Bongho Jang ◽  
Hyuk-Jun Kwon ◽  
...  

We investigate the annealing environment effect on ZrO2-based resistive random-access memory (RRAM) devices. Fabricated devices exhibited conventional bipolar-switching memory properties. In particular, the vacuum-annealed ZrO2 films exhibited larger crystallinity and grain size, denser film, and a relatively small quantity of oxygen vacancies compared with the films annealed in air and N2. These led to a decrease in the leakage current and an increase in the resistance ratio of the high-resistance state (HRS)/low-resistance state (LRS) and successfully improved non-volatile memory properties, such as endurance and retention characteristics. The HRS and LRS values were found to last for 104 s without any significant degradation.


Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 95 ◽  
Author(s):  
Paolo Bondavalli ◽  
Marie Martin ◽  
Louiza Hamidouche ◽  
Alberto Montanaro ◽  
Aikaterini-Flora Trompeta ◽  
...  

This paper deals with the fabrication of Resistive Random Access Memory (ReRAM) based on oxidized carbon nanofibers (CNFs). Stable suspensions of oxidized CNFs have been prepared in water and sprayed on an appropriate substrate, using the dynamic spray-gun deposition method, developed at Thales Research and Technology. This technique allows extremely uniform mats to be produced while heating the substrate at the boiling point of the solvent used for the suspensions. A thickness of around 150 nm of CNFs sandwiched between two metal layers (the metalized substrate and the top contacts) has been achieved, creating a Metal-Insulator-Metal (MIM) structure typical of ReRAM. After applying a bias, we were able to change the resistance of the oxidized layer between a low (LRS) and a high resistance state (HRS) in a completely reversible way. This is the first time that a scientific group has produced this kind of device using CNFs and these results pave the way for the further implementation of this kind of memory on flexible substrates.


2020 ◽  
Vol 10 (10) ◽  
pp. 3506
Author(s):  
Nayan C. Das ◽  
Se-I Oh ◽  
Jarnardhanan R. Rani ◽  
Sung-Min Hong ◽  
Jae-Hyung Jang

Resistive random-access memory (RRAM) devices are fabricated by utilizing silicon oxynitride (SiOxNy) thin film as a resistive switching layer. A SiOxNy layer is deposited on a p+-Si substrate and capped with a top electrode consisting of Au/Ni. The SiOxNy-based memory device demonstrates bipolar multilevel operation. It can switch interchangeably between all resistance states, including direct SET switching from a high-resistance state (HRS) to an intermediate-resistance state (IRS) or low-resistance state (LRS), direct RESET switching process from LRS to IRS or HRS, and SET/RESET switching from IRS to LRS or HRS by controlling the magnitude of the applied write voltage signal. The device also shows electroforming-free ternary nonvolatile resistive switching characteristics having RHRS/RIRS > 10, RIRS/RLRS > 5, RHRS/RLRS > 103, and retention over 1.8 × 104 s. The resistive switching mechanism in the devices is found to be combinatory processes of hopping conduction by charge trapping/detrapping in the bulk SiOxNy layer and filamentary switching mode at the interface between the SiOxNy and Ni layers.


Sign in / Sign up

Export Citation Format

Share Document