Hydrometallurgical Application of a Novel Porous Resin

1993 ◽  
Vol 330 ◽  
Author(s):  
Peter D. Unger ◽  
Ronald P. Rohrbach

ABSTRACTThe technology to manufacture rigid, highly porous materials of very low density that are suitable for use in a wide range of industrial applications has recently been developed in this laboratory. These materials, derived from naturally occurring polymers, have many useful physical characteristics including very large pore volume, pore size distribution in a useful range, and high surface area. These characteristicsw, hen combinedw ith their robust mechanicals trength, make them potentially useful as support matrices for various complexing agents. One demonstrated application of this material is as a polymeric carrierfo r selective liquid metal extractants in hydrometallurgicalp rocesses. We have successfully impregnated our porous matrix with several selective metal extractants, and demonstrated retention of the basic metal binding properties of the immobilized agent. Results of bench scale pilot studies using a copper selective impregnated resin indicate excellent capacity, and good selectivity and extraction/elution kinetics.

2020 ◽  
Vol 2 (5) ◽  
Author(s):  
M. Skovgaard ◽  
M. Gudik-Sørensen ◽  
K. Almdal ◽  
A. Ahniyaz

Abstract Nanoporous zirconia with high surface area and crystallinity has a wide range of industrial applications, such as in inorganic exchangers for ion exchange columns, catalyst substrates, and packing material for HPLC. Spherical particles of crystalline nanoporous zirconia are highly desired in various industries due to easy handling of the materials in a fluidized bed. Here, spray drying was adopted to produce spherical nanoporous zirconia powders in both laboratory scale and pilot plant scale. Effect of salts on spray-dried ZrO2 powders and their crystallization behavior was studied. It was found that addition of salts to the zirconia precursors has a huge effect on the crystallization of nanoporous zirconia powders. These results have a great impact on the development of microspheres of nanocrystalline ZrO2 and potentially open up a new opportunity to the low-cost production of porous ceramic microspheres with the salt templating method, in general.


Author(s):  
Guru Venkatesan ◽  
Andy Sarles

Droplet-based biomolecular arrays form the basis for a new class of bioinspired material system, whereby decreasing the sizes of the droplets and increasing the number of droplets can lead to higher functional density for the array. In this paper, we report on a non-microfluidic approach to form and connect nanoliter-to-femtoliter, lipid-coated aqueous droplets in oil to form micro-droplet interface bilayers (μDIBs). Two different modes of operation are reported for dispensing a wide range of droplet sizes (2–200μm radius). Due to the high surface-area-to-volume ratios of microdroplets at these length scales, droplet shrinking is prominent, which affects the stability and lifetime of the bilayer. To better quantify these effects, we measure the shrinkage rates for 8 different water droplet/oil compositions and study the effect of lipid placement and lipid type on morphological changes to μDIBs.


2021 ◽  
Author(s):  
Nuray Kizildag

Ceramic materials are well known for their hardness, inertness, superior mechanical and thermal properties, resistance against chemical erosion and corrosion. Ceramic nanofibers were first manufactured through a combination of electrospinning with sol–gel method in 2002. The electrospun ceramic nanofibers display unprecedented properties such as high surface area, length, thermo-mechanical properties, and hierarchically porous structure which make them candidates for a wide range of applications such as tissue engineering, sensors, water remediation, energy storage, electromagnetic shielding, thermal insulation materials, etc. This chapter focuses on the most recent advances in the applications of ceramic nanofibers.


2020 ◽  
Vol 50 (2) ◽  
pp. 59-64
Author(s):  
Carlos Negro ◽  
Ana Balea Martín ◽  
Jose Luis Sanchez-Salvador ◽  
Cristina Campano ◽  
Elena Fuente ◽  
...  

Nanocellulose (NC) and its wide applications have attracted high attention due to its desirable properties such as high surface area, extraordinary mechanical properties, high reactivity and easy modification of NC surface due to the presence of primary hydroxyl groups. NC also presents several environmental benefits, including high potential availability because its production is coming from natural sources, renewability and nontoxicity. This paper briefly summarizes some of the activities of the research group “Cellulose, Paper and Water Advanced Treatments” from Complutense University of Madrid that were presented in CAIQ 2019, including the main types of NC, the production processes and their characterization. Additionally, the most promising NC applications are described such as for paper and board, for wastewater treatment, food and cement-based materials. Moreover, a market perspective of NC is also presented.


2018 ◽  
Vol 78 (4) ◽  
pp. 947-956 ◽  
Author(s):  
Jia Wei ◽  
Yitao Liu ◽  
Jun Li ◽  
Hui Yu ◽  
Yongzhen Peng

Abstract In this work, a microporous municipal sewage sludge-derived hydrochar (MSSH) with relatively high surface area and abundant surface organic functional groups was produced through hydrothermal carbonization. Based on the adsorption results over a wide range of conditions, the prepared MSSH was suggested as a promising adsorbent for CV because of its high and efficient adsorption capability. The experimental data were fitted to several kinetic models. Based on calculated respective parameters such as rate constants, equilibrium adsorption capacities and correlation coefficients, the pseudo second-order model proved the best in describing the adsorption behavior of MSSH. Through kinetics, thermodynamic modeling studies and material characterization, a plausible adsorption process was discussed under the conditions used in this study. It can be confirmed that the adsorption of CV onto MSSH is via both physical interactions (electrostatic interaction and Van der Waals' force) and chemical interactions (formation of H-bonding).


2020 ◽  
Vol 82 (9) ◽  
pp. 1721-1741
Author(s):  
Jéssica Stefanello Cadore ◽  
Lucas Fernando Fabro ◽  
Thuany Garcia Maraschin ◽  
Nara Regina de Souza Basso ◽  
Marçal José Rodrigues Pires ◽  
...  

Abstract The presence of contaminants in water is concerning due to the potential impacts on human health and the environment, and ingested contaminants cause harm in various ways. The conventional water treatment systems are not efficient to remove these contaminants. Therefore, novel techniques and materials for the removal of contaminants are increasingly being developed. The separation process using modified membranes can remove these micropollutants; therefore, they have attracted significant research attention. Among the materials used for manufacturing of these membranes, composites based on graphene oxide and reduced graphene oxide are preferred owing to their promising properties, such as mechanical resistance, thermal and chemical stability, antifouling capacity, water permeability, high thermal and electrical conductivity, high optical transmittance and high surface area. Membrane separation processes (MSP) can be used as secondary or tertiary treatment during the supply of wastewater. However, the efficient and accessible applications of these technologies are challenging. This study aims to demonstrate the main concepts of membrane separation processes and their application in the removal of emerging contaminants. This study reports bibliometric mapping, relevant data on studies using membranes as water treatment processes, and their viability in industrial applications. The main challenges and perspectives of these technologies are discussed in detail as well.


BioResources ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 677-690
Author(s):  
Yan-Yun Wang ◽  
Qing-Jin Fu ◽  
Xiao Ning ◽  
Ge-Gu Chen ◽  
Chun-Li Yao

Bamboo nanocellulose can be regarded as a promising biomass material for the preparation of sustainable energy devices due to its unique structure, excellent properties, and wide range of sources. A highly conductive electrochemical energy storage was synthesized due to the excellent electrical conductivity of graphene and the high surface area of nanocellulose and graphene, which was beneficial for producing a network structure. The symmetric capacitor assembled from the Phyllostachys pubescens nanocellulose/graphene aerogel (CGA) electrode exhibited a high specific capacitance of 125.5 F/g at 5 mV/s and extreme stability of 98.3% capacitance retention ratio after 5000 cycles at 2 A/g. This nanocellulose-graphene electrode showed potential for future high-performance supercapacitors.


2021 ◽  
Vol 16 ◽  
Author(s):  
Balaji Maddiboyina ◽  
Ramya Krishna Nakkala ◽  
Prasanna Kumar Desu ◽  
Vikas Jhawat

Background: Nanoparticles made of silica are new materials that can be used in a wide range of drug delivery methods because they are biocompatible and biodegradable. Mesalamine, a classic water-soluble medication, remains loaded into the synthesized silica nanoparticle and is considered for sustained release proficiency. Precipitation approach using high surface area and pore volume tetraethyl orthosilicate yielded mesalamine-loaded silica nanoparticles. Methods: The drug-loaded nanoparticle was created and produced using two different techniques. Fourier transform infrared spectrometry, differential scanning calorimetry, X-ray powder diffraction, Brauer Emmett teller, scanning electron microscopy, particle size measurements, and dissolution investigations have all been used to analyse the substance in some way or another. Results: Because of the high surface area, well-known results like the complete silica nanoparticle created using method-2 remained mesoporous. The onset peak of the method-2 formulation's DSC was 182.27°c, and the offset peak was 192.14°c, consistent with the DSC results. The particle size range varies from 205-225nm. The results demonstrate that the uptake of the mesalamine by burst release it for 30 minutes initial, followed by sustained maintenance of dose even after 240 minutes. The results indicate that the loading process has an effect on the extent of loading. When silica nanoparticles were impregnated with mesalamine, the amount of the drug contained was significantly higher than when they were wetted. Conclusion: In addition, the XRD results show that both the pure mesalamine and the formulation did not show any polymorphic deviation.


2019 ◽  
Vol 5 (4) ◽  
pp. 59 ◽  
Author(s):  
Recep Üzek ◽  
Esma Sari ◽  
Arben Merkoçi

In recent years, various reports related to sensing application research have suggested that combining the synergistic impacts of optical, electrical or magnetic properties in a single technique can lead to a new multitasking platform. Owing to their unique features of the magnetic moment, biocompatibility, ease of surface modification, chemical stability, high surface area, high mass transference, magnetic nanoparticles have found a wide range of applications in various fields, especially in sensing systems. The present review is comprehensive information about magnetic nanoparticles utilized in the optical sensing platform, broadly categorized into four types: surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence spectroscopy and near-infrared spectroscopy and imaging (NIRS) that are commonly used in various (bio) analytical applications. The review also includes some conclusions on the state of the art in this field and future aspects.


2016 ◽  
Vol 852 ◽  
pp. 1455-1462
Author(s):  
Jie Zhang ◽  
Yong Heng Zhu ◽  
Shi Zao Kang ◽  
Xiang Qing Li ◽  
Jia Qiang Xu

In this paper, different SBA-15 molecular sieves were prepared in a facile sol-gel method by using a low-cost sodium silicate as silicon source at different ripening temperature. The materials were characterized by small-angle XRD, TEM, nitrogen adsorption–desorption test. The results showed that ripening temperature can affect the pore size and mesostructure of SBA-15. High surface area SBA-15 can be obtained at low ripening temperature, and plugged mesostructure can be prepared at high temperature. The gravimetric humidity sensing property of the materials were tested based on a transducer of quartz crystal microbalance. The test results revealed that all the samples showed high response in the wide range of relative humidity. The sensors based on that prepared at 35°C show a good stability and linearity in the range of 11.3%RH to 98%RRH along with fast response (12s) and recovery time (8s), ultrahigh sensitivity and low hysteresis, implying that has a great potential for humidity detection.


Sign in / Sign up

Export Citation Format

Share Document