Nanostructure of Porous Silicon Using Transmission Microscopy

1998 ◽  
Vol 536 ◽  
Author(s):  
M. H. Nayfeh ◽  
Z. Yamani ◽  
O. Gurdal ◽  
A. Alaql

AbstractWe use high resolution transmission electron microscopy (XTEM) to image the nanostructure of (100) p-type porous Si. A network of pore tracks subdivide the material into nanoislands and nanocrystallites are resolved through out the material. With distance from the substrate, electron diffraction develops, in addition to coherent diffraction, amorphous-like patterns that dominates the coherent scattering in the topmost luminescent layer. Also, with distance from the substrate, crystalline island size diminshes to as small as 1 nm in the topmost luminescence material. Although their uppermost layer has the most resolved nano crystallites, it has the strongest diffuse scattering of all regions. This suggests that the diffuse scattering is due to a size reduction effects rather than to an amorphous state. We discuss the relevance of a new dimer restructuring model in ultra small nanocrystallites to the loss of crystalline effects.

Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Gregorio Flores-Carrasco ◽  
Micaela Rodríguez-Peña ◽  
Ana Urbieta ◽  
Paloma Fernández ◽  
María Eugenia Rabanal

This paper reports on the synthesis of Ce-doped ZnO (CZO) nanoparticles (NPs) by an alternative polyol method at low temperature. The method, facile and rapid, uses acetate-based precursors, ethylene glycol as solvent, and polyvinylpyrrolidone as capping agent. The effects of the Ce-doping concentration (ranging from 0 to 8.24 atomic%) on the structural, morphological, compositional, optical, luminescence, and photocatalytic properties of the NPs were investigated by several techniques. The structural findings confirmed that the CZO NPs have a typical hexagonal wurtzite-type structure with a preferred orientation along the (101) plane. The results obtained by Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) revealed that the NPs size decreased (from ~30 to ~16 nm) with an increase in the Ce-doping concentration. Energy Dispersive X-Ray Spectroscopy (EDS) and High Resolution Transmission Microscopy (HRTEM) results confirmed the incorporation of Ce ions into the ZnO lattice. Ce-doping influences the photoluminescence (PL) emission compared to that of pure ZnO. The PL emission is related to the presence of different kinds of defects, which could take part in charge transfer and/or trapping mechanisms, hence playing an essential role in the photocatalytic activity (PCA). In fact, in this work we report an enhancement of PCA as a consequence of Ce-doping. In this sense, the best results were obtained for samples doped with 3.24 atomic%, that exhibited a photocatalytic degradation efficiency close to 99% after 60 min ultraviolet (UV) illumination, thus confirming the viability of Ce-doping for environmental applications.


1992 ◽  
Vol 281 ◽  
Author(s):  
S. Shih ◽  
K. H. Jung ◽  
D. L. Kwong

ABSTRACTWe have developed a new, minimal damage approach for examination of luminescent porous Si layers (PSLs) by transmission electron microscopy (TEM). In this approach, chemically etched PSLs are fabricated after conventional plan-view TEM sample preparation. A diffraction pattern consisting of a diffuse center spot, characteristic of amorphous material, is primarily observed. However, crystalline, microcrystalline, and amorphous regions could all be observed in selected areas. A crystalline mesh structure could be observed in some of the thin areas near the pinhole. The microcrystallite sizes were 15–150 Å and decreased in size when located further from the pinhole.


2011 ◽  
Vol 326 ◽  
pp. 151-156 ◽  
Author(s):  
Xiao Wei Zhou ◽  
Yi Fu Shen ◽  
Hui Ming Jin

Pulse current (PC) electro-deposition combined with the ultrasonic (U) field has been used to fabricate pure nickel and nickel-ceria composite coatings. Morphology, ceria (RE) composite, and crystal-texture were observed and analyzed by using environment scanning electron microscopy equipped with energy dispersive X-ray analysis (ESEM/EDAX) and transmission electron microscopy (TEM). Experimental results indicate that it produced the alloying coatings, exhibiting compact grain and be of amorphous state. Nano-sized RE would preferentially occupy and pad the defective area between the cracked gap and micropores to limit the growth of the original Ni grain, and far from coarse grain. Furthermore, during annealed at 500 °C for 2 h, dispersing a solid-solution precipitated phase named NiCexO1-x (0<x<0.5), it would make diffused sufficiently to promote densification and microhardness greatly.


2005 ◽  
Vol 20 (2) ◽  
pp. 456-463 ◽  
Author(s):  
Jiin-Long Yang ◽  
J.S. Chen ◽  
S.J. Chang

The distribution of Au and NiO in NiO/Au ohmic contact on p-type GaN was investigated in this work. Au (5 nm) films were deposited on p-GaN substrates by magnetron sputtering. Some of the Au films were preheated in N2 ambient to agglomerate into semi-connected structure (abbreviated by agg-Au); others were not preheated and remained the continuous (abbreviated by cont-Au). A NiO film (5 nm) was deposited on both types of samples, and all samples were subsequently annealed in N2 ambient at the temperatures ranging from 100 to 500 °C. The surface morphology, phases, and cross-sectional microstructure were investigated by scanning electron microscopy, glancing incident angle x-ray diffraction, and transmission electron microscopy. I-V measurement on the contacts indicates that only the 400 °C annealed NiO/cont-Au/p-GaN sample exhibits ohmic behavior and its specific contact resistance (ρc) is 8.93 × 10−3 Ω cm2. After annealing, Au and NiO contact to GaN individually in the NiO/agg-Au/p-GaN system while the Au and NiO layers become tangled in the NiO/cont-Au/p-GaN system. As a result, the highly tangled NiO-Au structure shall be the key to achieve the ohmic behavior for NiO/cont-Au/p-GaN system.


2014 ◽  
Vol 3 (2) ◽  
pp. 245-252 ◽  
Author(s):  
E. Dilonardo ◽  
M. Penza ◽  
M. Alvisi ◽  
C. Di Franco ◽  
D. Suriano ◽  
...  

Abstract. In the present study, Au-surfactant core-shell colloidal nanoparticles (NPs) with controlled dimension and composition were synthesized by sacrificial anode electrolysis. Transmission electron microscopy (TEM) revealed that Au NPs core diameter is between 8 and 12 nm, as a function of the electrosynthesis conditions. Moreover, surface spectroscopic characterization by X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of nanosized gold phase. Controlled amounts of Au NPs were then deposited electrophoretically on carbon nanotube (CNT) networked films. The resulting hybrid materials were morphologically and chemically characterized using TEM, SEM (scanning electron microscopy) and XPS analyses, which revealed the presence of nanoscale gold, and its successful deposition on CNTs. Au NP/CNT networked films were tested as active layers in a two-pole resistive NO2 sensor for sub-ppm detection in the temperature range of 100–200 °C. Au NP/CNT exhibited a p-type response with a decrease in the electrical resistance upon exposure to oxidizing NO2 gas and an increase in resistance upon exposure to reducing gases (e.g. NH3). It was also demonstrated that the sensitivity of the Au NP/CNT-based sensors depends on Au loading; therefore, the impact of the Au loading on gas sensing performance was investigated as a function of the working temperature, gas concentration and interfering gases.


2000 ◽  
Vol 650 ◽  
Author(s):  
Te-Sheng Wang ◽  
A.G. Cullis ◽  
E.J.H. Collart ◽  
A.J. Murrell ◽  
M.A. Foad

ABSTRACTBoron is the most important p-type dopant in Si and it is essential that, especially for low energy implantation, both as-implanted B distributions and those produced by annealing should be characterized in very great detail to obtain the required process control for advanced device applications. While secondary ion mass spectrometry (SIMS) is ordinarily employed for this purpose, in the present studies implant concentration profiles have been determined by direct B imaging with approximately nanometer depth and lateral resolution using energy-filtered imaging in the transmission electron microscopy. The as-implanted B impurity profile is correlated with theoretical expectations: differences with respect to the results of SIMS measurements are discussed. Changes in the B distribution and clustering that occur after annealing of the implanted layers are also described.


2021 ◽  
Vol 1035 ◽  
pp. 1043-1049
Author(s):  
Di Xiang ◽  
Chang Long Shao

A simple route has been developed for the synthesis of Ag2O/ZnO heterostructures and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and photoluminescence (PL) spectroscopy analysis. Considering the porous structure of Ag2O/ZnO, the photocatalytic degradation for the organic dyes, such as eosin red (ER), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB), under visible light irradiation was investigated in detail. Noticeably, Ag2O/ZnO just took 40 min to degrade 96 % MB. The rate of degradation using the Ag2O/ZnO heterostructures was 2.3 times faster than that of the bare porous ZnO nanospheres under visible light irradiation due to that the recombination of the photogenerated charge was inhibited greatly in the p-type Ag2O and n-type ZnO semiconductor. So the Ag2O/ZnO heterostuctures showed the potential application on environmental remediation.


Sign in / Sign up

Export Citation Format

Share Document