The Temperature Dependent Breakdown Voltage For 4H- and 6H-SiC Diodes

2000 ◽  
Vol 622 ◽  
Author(s):  
Y. S. Lee ◽  
M. K. Han ◽  
Y. I. Choi

ABSTRACTThe breakdown voltages of 6H- and 4H-SiC rectifiers as function of temperature were modeled analytically in both non-reachthrough diode and reachthrough diode. The breakdown voltage was derived by the ionization integral employing accurate hole impact ionization coefficient. The breakdown voltage of SiC rectifiers was increased with increasing temperature and the positive temperature coefficient of breakdown voltage indicates that SiC rectifiers are suitable for high temperature applications. The breakdown voltages of both 6H- and 4H-SiC diodes were increased by M(T)-1/4 in NRDs and M(T)-1/8 in RDs.

2014 ◽  
Vol 778-780 ◽  
pp. 461-466 ◽  
Author(s):  
Hiroki Niwa ◽  
Jun Suda ◽  
Tsunenobu Kimoto

Impact ionization coefficients of 4H-SiC were measured at room temperature and at elevated temperatures up to 200°C. Photomultiplication measurement was done in two complementary photodiodes to measure the multiplication factors of holes (Mp) and electrons (Mn), and ionization coefficients were extracted. Calculated breakdown voltage using the obtained ionization coefficients showed good agreement with the measured values in this study, and also in other reported PiN diodes and MOSFETs. In high-temperature measurement, breakdown voltage exhibited a positive temperature coefficient and multiplication factors showed a negative temperature coefficient. Therefore, extracted ionization coefficient has decreased which can be explained by the increase of phonon scattering. The calculated temperature dependence of breakdown voltage agreed well with the measured values not only for the diodes in this study, but also in PiN diode in other literature.


2009 ◽  
Vol 615-617 ◽  
pp. 311-314 ◽  
Author(s):  
W.S. Loh ◽  
J.P.R. David ◽  
B.K. Ng ◽  
Stanislav I. Soloviev ◽  
Peter M. Sandvik ◽  
...  

Hole initiated multiplication characteristics of 4H-SiC Separate Absorption and Multiplication Avalanche Photodiodes (SAM-APDs) with a n- multiplication layer of 2.7 µm were obtained using 325nm excitation at temperatures ranging from 300 to 450K. The breakdown voltages increased by 200mV/K over the investigated temperature range, which indicates a positive temperature coefficient. Local ionization coefficients, including the extracted temperature dependencies, were derived in the form of the Chynoweth expression and were used to predict the hole multiplication characteristics at different temperatures. Good agreement was obtained between the measured and the modeled multiplication using these ionization coefficients. The impact ionization coefficients decreased with increasing temperature, corresponding to an increase in breakdown voltage. This result agrees well with the multiplication characteristics and can be attributed to phonon scattering enhanced carrier cooling which has suppressed the ionization process at high temperatures. Hence, a much higher electric field is required to achieve the same ionization rates.


2009 ◽  
Vol 615-617 ◽  
pp. 865-868
Author(s):  
Stanislav I. Soloviev ◽  
Alexey V. Vert ◽  
Jody Fronheiser ◽  
Peter M. Sandvik

In this work, avalanche photodiodes (APDs) were fabricated using a-plane 6H- and 4H-SiC materials to investigate their electrical and optical properties. Temperature dependence of avalanche breakdown was measured. The diode structures were fabricated with positive angle beveling and oxide passivation to ensure a uniform breakdown across the device area. Despite the apparent presence of micro-plasmas, we observed that the breakdown voltage of a-plane 6H-SiC APDs increased with temperature suggesting a positive temperature coefficient.


2005 ◽  
Vol 52 (7) ◽  
pp. 1627-1633 ◽  
Author(s):  
N.S. Waldron ◽  
A.J. Pitera ◽  
M. L. Lee ◽  
E.A. Fitzgerald ◽  
J.A. delAlamo

Author(s):  
DEEKSHA BAJPAI ◽  
AVNISH KUMAR UPADHYAY

In this paper, the effect of temperature variation and doping variation of p-body on various parameters like Breakdown voltage, on resistance, drain leakage current, threshold voltage etc of SOI laterally diffused MOSFET has been analyzed. Since power mosfet is designed for radio frequency power amplifiers which is used in wireless system-on-a-chip applications. The device is fabricated on a thin-film SOI wafer in order to reduce the leakage current and also prohibit the formation of parasitic diode with substrate. On the basis of analysis we are able to prove that this SOI LDMOSFET has +ve temperature coefficient for breakdown voltage, negative temp coefficient for threshold voltage, positive temperature coefficient for on resistance and +ve temperature coefficient for drain leakage current.


2006 ◽  
Vol 527-529 ◽  
pp. 1367-1370
Author(s):  
Lin Zhu ◽  
Peter A. Losee ◽  
T. Paul Chow ◽  
Kenneth A. Jones ◽  
Charles Scozzie ◽  
...  

4H-SiC PiN rectifiers with implanted anode and single-zone JTE were fabricated using AlN capped anneal. The surface damage during the high temperature activation anneal is significantly reduced by using AlN capped anneal. The forward drop of the PiN rectifiers at 100A/cm2 is 3.0V while the leakage current is less than 10-7A/cm2 up to 90% breakdown voltage at room temperature. With 6μm thick and 2×1016cm-3 doped drift layer, the PiN rectifiers can achieve near ideal breakdown voltage up to 1050V. Hole impact ionization rate was extracted and compared with previously reported results.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1056 ◽  
Author(s):  
Ping-Zhan Si ◽  
Xin-You Wang ◽  
Hong-Liang Ge ◽  
Hui-Dong Qian ◽  
Jihoon Park ◽  
...  

The magnetization of most materials decreases with increasing temperature due to thermal deterioration of magnetic ordering. Here, we show that Mn4C phase can compensate the magnetization loss due to thermal agitation. The Mn–C nanoparticles containing ferrimagnetic Mn4C and other Mn–C/Mn-O phases were prepared by using the traditional arc-discharge method. A positive temperature coefficient of magnetization (~0.0026 Am2 kg−1 K−1) and an exchange bias up to 0.05 T were observed in the samples. We ascribe the exchange bias to the co-existence of ferrimagnetic Mn4C/Mn3O4 and antiferromagnetic α-Mn(C)/MnO phases. The positive temperature coefficient of magnetization of the samples was ascribed to the presence of Mn4C phase, which is considered as a Néel’s P-type ferrimagnet.


2002 ◽  
Vol 748 ◽  
Author(s):  
S. Saha ◽  
D. Y. Kaufman ◽  
S. K. Streiffer ◽  
R. A. Erck ◽  
O. Auciello

ABSTRACTThe leakage and dielectric properties of a thickness series (90–480 nm) of {100} fiber-textured MOCVD (Ba0.75Sr0.25)Ti1+yO3+z (BST) thin films on Pt/SiO2/Si were investigated. The temperature and voltage dependence of the permittivity were consistent with previous observations, where thinner films demonstrated a suppressed temperature and electric field response that transitioned to a more bulk-like response with increasing film thickness. The current-voltage characteristics showed two distinct regimes. At low fields the current displayed weak field dependence and a monotonic increase with increasing temperature. In contrast, positive temperature coefficient of resistance (PTCR) was observed in the high-field leakage current behavior. The PTCR behavior was more pronounced for thicker BST films. Factors contributing to the observed PTCR effect are outlined and contrasted with the description for bulk BaTiO3 ceramics.


Sign in / Sign up

Export Citation Format

Share Document