Constant Final-State Photoemission Study of Silicon Fluoride Reaction Layer Created During Etching: Morphology of the Reaction Layer

1986 ◽  
Vol 75 ◽  
Author(s):  
J. A. Yarmoff ◽  
F. R. McFeely

AbstractSoft x-ray core-level photoemission was used to study the reaction layer formed on a Si(111) surface during steady-state etching by XeF2. These surfaces show shifted Si 2p core levels which correspond to particular silicon fluoride species residing in the reaction layer. Spectra were collected in constant final state (CFS) mode for electron kinetic energies ranging from 2 eV to 90 eV. The use of CFS mode allowed the electron escape length to remain constant during individual spectra. The electron escape length for the reaction layer as a function of kinetic energy was then determined by monitoring the intensity of the bulk silicon signal. Thus, by analyzing the proportions of each silicon fluoride species observed in the individual CFS spectra as a function of the electron escape depth in the reaction layer, the distribution of the silicon fluoride species in the layer was obtained. The distribution determined placed SiF at the interface between the reaction layer and the bulk silicon, and the remaining species, SiF2, SiF3 and SiF4, successively layered on top. This observation leads to a model for the structure of the reaction layer.

Langmuir ◽  
2006 ◽  
Vol 22 (20) ◽  
pp. 8587-8594 ◽  
Author(s):  
Lay-Lay Chua ◽  
Mandal Dipankar ◽  
Sankaran Sivaramakrishnan ◽  
Xingyu Gao ◽  
Dongchen Qi ◽  
...  

1992 ◽  
Vol 270 ◽  
Author(s):  
J. Wu ◽  
Z.-X. Shen ◽  
D. S. Dessau ◽  
R. Cao ◽  
D. S. Marshall ◽  
...  

ABSTRACTWe report angle-resolved photoemission data from single crystals of C60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C60. We assert that the width of the photoemission peak of C60 does not reflectthe intrinsic band width.


2013 ◽  
Vol E96.C (5) ◽  
pp. 680-685 ◽  
Author(s):  
Akio OHTA ◽  
Katsunori MAKIHARA ◽  
Seiichi MIYAZAKI ◽  
Masao SAKURABA ◽  
Junichi MUROTA
Keyword(s):  
X Ray ◽  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avanish Mishra ◽  
Cody Kunka ◽  
Marco J. Echeverria ◽  
Rémi Dingreville ◽  
Avinash M. Dongare

AbstractDuring the various stages of shock loading, many transient modes of deformation can activate and deactivate to affect the final state of a material. In order to fundamentally understand and optimize a shock response, researchers seek the ability to probe these modes in real-time and measure the microstructural evolutions with nanoscale resolution. Neither post-mortem analysis on recovered samples nor continuum-based methods during shock testing meet both requirements. High-speed diffraction offers a solution, but the interpretation of diffractograms suffers numerous debates and uncertainties. By atomistically simulating the shock, X-ray diffraction, and electron diffraction of three representative BCC and FCC metallic systems, we systematically isolated the characteristic fingerprints of salient deformation modes, such as dislocation slip (stacking faults), deformation twinning, and phase transformation as observed in experimental diffractograms. This study demonstrates how to use simulated diffractograms to connect the contributions from concurrent deformation modes to the evolutions of both 1D line profiles and 2D patterns for diffractograms from single crystals. Harnessing these fingerprints alongside information on local pressures and plasticity contributions facilitate the interpretation of shock experiments with cutting-edge resolution in both space and time.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Koji Kato ◽  
Naoyuki Miyazaki ◽  
Tasuku Hamaguchi ◽  
Yoshiki Nakajima ◽  
Fusamichi Akita ◽  
...  

AbstractPhotosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95 Å resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Anna Mullin ◽  
Stuart Nicholls ◽  
Holly Pacey ◽  
Michael Parker ◽  
Martin White ◽  
...  

Abstract We present a novel technique for the analysis of proton-proton collision events from the ATLAS and CMS experiments at the Large Hadron Collider. For a given final state and choice of kinematic variables, we build a graph network in which the individual events appear as weighted nodes, with edges between events defined by their distance in kinematic space. We then show that it is possible to calculate local metrics of the network that serve as event-by-event variables for separating signal and background processes, and we evaluate these for a number of different networks that are derived from different distance metrics. Using a supersymmetric electroweakino and stop production as examples, we construct prototype analyses that take account of the fact that the number of simulated Monte Carlo events used in an LHC analysis may differ from the number of events expected in the LHC dataset, allowing an accurate background estimate for a particle search at the LHC to be derived. For the electroweakino example, we show that the use of network variables outperforms both cut-and-count analyses that use the original variables and a boosted decision tree trained on the original variables. The stop example, deliberately chosen to be difficult to exclude due its kinematic similarity with the top background, demonstrates that network variables are not automatically sensitive to BSM physics. Nevertheless, we identify local network metrics that show promise if their robustness under certain assumptions of node-weighted networks can be confirmed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract This chapter provides an overview of the structural and synthetic chemistry, and the industrial applications, of dioxazine pigments, a small group of high performance organic pigments. The color violet (or purple) has frequently assumed a prominent position in history, on account of its rarity and cost. The natural colorant Tyrian purple and the first synthetic textile dye, Mauveine, are prime examples of this unique historical feature. CI Pigment Violet 23, also referred to as Dioxazine Violet or Carbazole Violet, is one of the most universally used organic pigments, by far the most important industrial pigment in the violet shade area. Dioxazine Violet is also unique as the dominant industrial violet pigment providing a brilliant, intense violet color and an excellent all-round set of fastness properties. The pigment has a polycyclic molecular structure, originally described wrongly as a linear arrangement, and later shown to adopt an S-shaped arrangement on the basis of X-ray structural analysis. Two other dioxazine pigments are of rather lesser importance. The synthesis and manufacturing route to CI Pigment Violet 23 is described in the review. Finally, a survey of the principal current applications of the individual dioxazine pigments is presented.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Hiroyuki Yamane ◽  
Masaki Oura ◽  
Osamu Takahashi ◽  
Tomoko Ishihara ◽  
Noriko Yamazaki ◽  
...  

AbstractAdhesion is an interfacial phenomenon that is critical for assembling carbon structural composites for next-generation aircraft and automobiles. However, there is limited understanding of adhesion on the molecular level because of the difficulty in revealing the individual bonding factors. Here, using soft X-ray spectromicroscopy we show the physical and chemical states of an adhesive interface composed of a thermosetting polymer of 4,4’-diaminodiphenylsulfone-cured bisphenol A diglycidyl ether adhered to a thermoplastic polymer of plasma-treated polyetheretherketone. We observe multiscale phenomena in the adhesion mechanisms, including sub-mm complex interface structure, sub-μm distribution of the functional groups, and molecular-level covalent-bond formation. These results provide a benchmark for further research to examine how physical and chemical states correlate with adhesion, and demonstrate that soft X-ray imaging is a promising approach for visualizing the physical and chemical states at adhesive interfaces from the sub-mm level to the molecular level.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1986
Author(s):  
Andreas Koenig ◽  
Julius Schmidtke ◽  
Leonie Schmohl ◽  
Sibylle Schneider-Feyrer ◽  
Martin Rosentritt ◽  
...  

The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (µXCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 µm were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties.


Sign in / Sign up

Export Citation Format

Share Document