Xe Precipitates in Aluminum

2003 ◽  
Vol 792 ◽  
Author(s):  
Robert C. Birtcher ◽  
Stephen E. Donnelly ◽  
Ian Morrison ◽  
Charles W. Allen ◽  
Kazuo Furuya ◽  
...  

ABSTRACTReal space, high-resolution transmission electron microscopy observations of Xe confined in nanometer size faceted cavities in Al yield information on both the inert gas and the matrix in which it is confined. At room temperature, Xe in such cavities can be liquid or an fcc solid. In larger cavities, Xe within can undergo melting and recrystallization. The Al surface energy can be deduced from the largest Xe nanocrystal at 300 K by setting the corresponding calculated Laplace pressure equal to the equilibrium pressure for melting of Xe, obtained from empirical bulk compression data. These surface energy values are 1.05 J m-2 for {111} facets and 1.10 Jm-2 for {200} facets. Because of the weak interactions, these values correspond to the surface tensions for Al at 300 K.At room temperature, fluid Xe confined in small faceted cavities in aluminum has up to three ordered layers of Xe atoms at the Al interface. Conceptually in a three-dimensionally confined system of sufficiently small size, complete three-dimensional ordering of the fluid may occur. Molecular dynamics simulations have revealed that such ordering would result in fluid Xe confined to a small tetragonal volume solidifying as a body-centered cubic phase on compression.

2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Guoliang Xu ◽  
Xia Wang ◽  
Ming Li ◽  
Zhucui Jing

AbstractWe present an efficient and reliable algorithm for determining the orientations of noisy images obtained fromprojections of a three-dimensional object. Based on the linear relationship among the common line vectors in one image plane, we construct a sparse matrix, and show that the coordinates of the common line vectors are the eigenvectors of the matrix with respect to the eigenvalue 1. The projection directions and in-plane rotation angles can be determined fromthese coordinates. A robust computation method of common lines in the real space using aweighted cross-correlation function is proposed to increase the robustness of the algorithm against the noise. A small number of good leading images, which have the maximal dissimilarity, are used to increase the reliability of orientations and improve the efficiency for determining the orientations of all the images. Numerical experiments show that the proposed algorithm is effective and efficient.


2014 ◽  
Vol 70 (a1) ◽  
pp. C368-C368 ◽  
Author(s):  
Alexander Eggeman ◽  
Robert Krakow ◽  
Paul Midgley

STEM and TEM-based tomography has been used widely to study the 3D morphology of a wide range of materials. Similarly reciprocal space tomography in which a tilt-series of diffraction patterns are acquired offers a powerful method for the analysis of the atomic structure of crystalline materials. The natural progression is to combine these techniques into a complete three dimensional morphology and crystallography data set, allowing both features to be studied simultaneously. Using a tilt series of scanning precession electron diffraction measurements from a commercially available Ni-base superalloy as an example, the complete reciprocal lattice orientation for a number of components embedded within the matrix could be determined. It was straightforward to identify reciprocal lattice vectors that allowed dark-field images representing each phase to be produced post-acquisition. In turn these were combined using geometric tomography methods to yield a 3-D tomogram of the superalloy. Imaging these phases using conventional ADF STEM tomography would potentially be challenging given the compositional similarity between the different phases. From the combined dataset the spatial distribution of the component phases could be easily recovered but more importantly the orientational relationships between these different components could be unambiguously determined. In this way the thermo-mechanical history of the sample could be inferred from the arrangement of coherent and semi-coherent interfaces and a previously unreported crystallographic registry between metal carbide (MC) and the matrix f.c.c. phases could been identified. The possibilities for development and applications of this technique will be discussed further.


1992 ◽  
Vol 7 (9) ◽  
pp. 2440-2446 ◽  
Author(s):  
Vinayak P. Dravid ◽  
Xiwei Lin ◽  
Hong Zhang ◽  
Shengzhong Liu ◽  
Manfred M. Kappes

Transmission electron microscopy (TEM) techniques have been employed to study the room temperature solid state form of chromatographically purified C70. Tilting and electron diffraction experiments in three-dimensional reciprocal space, on samples prepared by crystallization from several different solvents, show that C70 crystallites adopt hexagonal close packed (hcp) structure with a = 1.01 ± 0.05 nm and c = 1.70 ± 0.08 nm. The extinctions and observed reflections conform to the P63/mmc space group. High resolution TEM images reveal the molecular order and periodicity associated with C70 crystallites in real space. The experimental results are in agreement with the preliminary computations of crystal structure within acceptable error limits.


2021 ◽  
Vol 77 (1) ◽  
pp. 29-39
Author(s):  
Xiang-Long Niu ◽  
Lin Wei ◽  
Jian-Cheng Liu ◽  
Wan-He Jia ◽  
Jian-Ping Ma ◽  
...  

Semirigid organic ligands can adopt different conformations to construct coordination polymers with more diverse structures when compared to those constructed from rigid ligands. A new asymmetric semirigid organic ligand, 4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine (L), has been prepared and used to synthesize three bimetallic macrocyclic complexes and one coordination polymer, namely, bis(μ-4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine)bis[dichloridozinc(II)] dichloromethane disolvate, [Zn2Cl4(C12H10N6)2]·2CH2Cl2, (I), the analogous chloroform monosolvate, [Zn2Cl4(C12H10N6)2]·CHCl3, (II), bis(μ-4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine)bis[diiodidozinc(II)] dichloromethane disolvate, [Zn2I4(C12H10N6)2]·2CH2Cl2, (III), and catena-poly[[[diiodidozinc(II)]-μ-4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine] chloroform monosolvate], {[ZnI2(C12H10N6)]·CHCl3} n , (IV), by solution reaction with ZnX 2 (X = Cl and I) in a CH2Cl2/CH3OH or CHCl3/CH3OH mixed solvent system at room temperature. Complex (I) is isomorphic with complex (III) and has a bimetallic ring possessing similar coordination environments for both of the ZnII cations. Although complex (II) also contains a bimetallic ring, the two ZnII cations have different coordination environments. Under the influence of the I− anion and guest CHCl3 molecule, complex (IV) displays a significantly different structure with respect to complexes (I)–(III). C—H...Cl and C—H...N hydrogen bonds, and π–π stacking or C—Cl...π interactions exist in complexes (I)–(IV), and these weak interactions play an important role in the three-dimensional structures of (I)–(IV) in the solid state. In addition, the fluorescence properties of L and complexes (I)–(IV) were investigated.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Katherine G. McFerrin ◽  
Yuan-Ping Pang

AbstractMolecular dynamics simulations of hemicarcerands and related variants allow the study of constrictive binding and offer insight into the rules of molecular complexation, but are limited because three-dimensional models of hemicarcerands are tedious to build and their atomic charges are complicated to derive. There have been no molecular dynamics simulations of the reported water-soluble hemicarcerand (Octacid4) that explain how Octacid4 encapsulates guests at 298 K and keeps them encapsulated at 298 K in NMR experiments. Herein we report a modular approach to hemicarcerand simulations that simplifies the model building and charge derivation in a manner reminiscent of the approach to protein simulations with truncated amino acids as building blocks. We also report that in aqueous molecular dynamics simulations at 298 K apo Octacid4 adopts two clusters of conformations one of which has an equatorial portal open but the guest-bound Octacid4 adopts one cluster of conformations with all portals closed. These results explain how Octacid4 incarcerates guests at room temperature and suggest that the guest-induced host conformational change that impedes decomplexation is a previously unrecognized conformational characteristic that promotes strong molecular complexation.


2022 ◽  
Author(s):  
Max Birch ◽  
David Cortés-Ortuño ◽  
Kai Litzius ◽  
Sebastian Wintz ◽  
Frank Schulz ◽  
...  

Abstract Research into practical applications of magnetic skyrmions, nanoscale solitons with interesting topological and transport properties [1,2], has traditionally focused on two dimensional (2D) thin-film systems[3,4]. However, the recent observation of novel three dimensional (3D) skyrmion-like structures, such as hopfions [5], skyrmion strings (SkS) [6-9], skyrmion bundles [11] and skyrmion braids [12], motivates the investigation of new designs, aiming to exploit the third spatial dimension for more compact and higher performance spintronic devices in 3D or curvilinear geometries [13-15]. A crucial requirement of such device schemes is the control of the 3D magnetic structures via charge or spin currents, which has yet to be experimentally observed. In this work, we utilise real-space imaging to investigate the dynamics of a 3D SkS within a nanowire of Co8Zn9Mn3 at room temperature. Utilising single, nanoscale current pulses, we demonstrate current-induced nucleation of a single SkS, and a toggle-like positional switching of an individual Bloch point at the end of a SkS. The observations highlight the possibility to locally manipulate 3D topological spin textures, opening up a range of design concepts for future 3D spintronic devices.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


Author(s):  
D. E. Johnson

Increased specimen penetration; the principle advantage of high voltage microscopy, is accompanied by an increased need to utilize information on three dimensional specimen structure available in the form of two dimensional projections (i.e. micrographs). We are engaged in a program to develop methods which allow the maximum use of information contained in a through tilt series of micrographs to determine three dimensional speciman structure.In general, we are dealing with structures lacking in symmetry and with projections available from only a limited span of angles (±60°). For these reasons, we must make maximum use of any prior information available about the specimen. To do this in the most efficient manner, we have concentrated on iterative, real space methods rather than Fourier methods of reconstruction. The particular iterative algorithm we have developed is given in detail in ref. 3. A block diagram of the complete reconstruction system is shown in fig. 1.


Author(s):  
N.J. Long ◽  
M.H. Loretto ◽  
C.H. Lloyd

IntroductionThere have been several t.e.m. studies (1,2,3,4) of the dislocation arrangements in the matrix and around the particles in dispersion strengthened single crystals deformed in single slip. Good agreement has been obtained in general between the observed structures and the various theories for the flow stress and work hardening of this class of alloy. There has been though some difficulty in obtaining an accurate picture of these arrangements in the case when the obstacles are large (of the order of several 1000's Å). This is due to both the physical loss of dislocations from the thin foil in its preparation and to rearrangement of the structure on unloading and standing at room temperature under the influence of the very high localised stresses in the vicinity of the particles (2,3).This contribution presents part of a study of the Cu-Cr-SiO2 system where age hardening from the Cu-Cr and dispersion strengthening from Cu-Sio2 is combined.


Author(s):  
Ian M. Anderson

B2-ordered iron aluminide intermetallic alloys exhibit a combination of attractive properties such as low density and good corrosion resistance. However, the practical applications of these alloys are limited by their poor fracture toughness and low room temperature ductility. One current strategy for overcoming these undesirable properties is to attempt to modify the basic chemistry of the materials with alloying additions. These changes in the chemistry of the material cannot be fully understood without a knowledge of the site-distribution of the alloying elements. In this paper, the site-distributions of a series of 3d-transition metal alloying additions in B2-ordered iron aluminides are studied with ALCHEMI.A series of seven alloys of stoichiometry Fe50AL45Me5, with Me = {Ti, V, Cr, Mn, Co, Ni, Cu}, were prepared with identical heating cycles. Microalloying additions of 0.2% B and 0.1% Zr were also incorporated to strengthen the grain boundaries, but these alloying additions have little influence on the matrix chemistry and are incidental to this study.


Sign in / Sign up

Export Citation Format

Share Document