scholarly journals CURING THE DRUG RESISTANCE PLASMID IN E. COLI O157:H7

Author(s):  
K OZDEMIR
Author(s):  
Jai Sunder ◽  
T. Sujatha ◽  
S. Bhowmick ◽  
S.C. Mayuri ◽  
A.K. De ◽  
...  

Background: Transmission of antibiotic resistance from animal food chain to human through animal food-borne pathogens have led to increased public concern. Wider surveillance on prevalence of antibiotic resistance in E. coli will provide information on evolution of resistance in various geographical locations. The purpose of this study was to investigate the presence of antimicrobial resistance of E. coli isolates from poultry under various farming system in A and N Islands and resistance genes of tet, ctx-M and aac encoding the isolates. Methods: Isolates were obtained from cloacal swabs in poultry under various farming systems and tested against major antimicrobial derivatives to study multi drug resistance. The presence of genes associated with resistance to tetracycline (tet A), ESBL (CTX-M) and Gentamycin (aac(3)-IV) were determined by PCR. Result: A total of 126 cloacal samples were analysed out of which 31.38% of the E.coli isolates from poultry under various farming systems were producing extended spectrum beta-lactamases and were multiple antimicrobial resistant. Poultry birds of commercial farms showed higher resistance levels (37.5%) than organised farms (24.76%) and desi birds (31.88%). Results indicate a high level of multi-drug resistance is emerging even in desi birds. It is suggested that an antimicrobial resistance surveillance program is needed in A and N Islands in order to detect bacterial resistance among rural poultry production as the 80 percentage of total poultry population belong to desi birds.


2019 ◽  
Vol 11 (01) ◽  
pp. 068-074 ◽  
Author(s):  
Sheetal Verma ◽  
Vimala Venkatesh ◽  
Rashmi Kumar ◽  
Saurabh Kashyap ◽  
Manoj Kumar ◽  
...  

Abstract INTRODUCTION: Infectious diarrhea is leading infectious cause of childhood morbidity, hospitalizations, and mortality particularly in children living in developing countries like India. The etiological agents differ depending on geographical area, and recent data suggest increase in drug resistance to various enteropathogens. AIMS AND OBJECTIVES: The aim of the study was to investigate emerging diarrheal agents and antimicrobial resistance profile of bacterial pathogens from children (<12 years of age) hospitalized with acute diarrhea. MATERIALS AND METHODS: A cross-sectional, hospital-based observational study was conducted over 1 year in which 100 children <12 years who were hospitalized due to diarrhea were recruited. Diarrhea was defined as the passage of three or more liquid stools in a 24-h period using the World Health Organization guidelines. Samples were processed for detection of various bacterial, viral, and parasitic agents by standard microbiological, serological, and molecular tests. Antimicrobial resistance testing was performed with the Kirby–Bauer disk diffusion method. ELISA was performed for Rotavirus and Escherichia coli O157. Multiplex polymerase chain reaction test was performed to detect diarrheagenic E. coli (DEC). RESULTS: Pathogenic diarrheal agents were found in 63% patients. Rotavirus was identified in 52.5%, DEC in 29%, Vibrio cholerae in 4%, Shigella flexneri in 3%, Aeromonas sp. in 1%, Giardia lamblia in 4%, and Entamoeba histolytica in 1% cases. Enteropathogenic E. coli (EPEC) in 19 (65.5%) cases was the most common agent followed by Enteroaggregative E. coli (EAEC) in 5 (17.2%), Enterotoxigenic E. coli (ETEC) in 2 (6%), and Enteroinvasive E. coli (EIEC) in 3 (10.3%) cases. Resistance rates of DEC to first-line therapeutic drugs were high, 97.3% to ampicillin and 95.95% to co-trimoxazole. DEC was susceptible to chloramphenicol in 58.11%, gentamicin in 48.19%, and amikacin in 58.11% cases. Shigella sp. and V. cholerae isolates were 100% sensitive to gentamicin and ofloxacin. CONCLUSION: EPEC is the most common DEC pathotype and EAEC, ETEC, and EIEC are also emerging as dominant diarrheal agents. Rotavirus was the most common causative agents of diarrhea especially in children <5 years. Most of the bacterial isolates showed high level of drug resistance to first-line empirical drugs and were multidrug resistant making them unsuitable for empiric treatment. Laboratory monitoring of drug susceptibility of stool isolates appears necessary to formulate antibiotic policy for treating diarrheal illness at the local level. There is an urgent need to strengthen diarrheal surveillance to monitor susceptibility to commonly prescribed antibiotics.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dongxing Tian ◽  
Bingjie Wang ◽  
Hong Zhang ◽  
Fen Pan ◽  
Chun Wang ◽  
...  

ABSTRACT The continuous emergence of novel New Delhi metallo-β-lactamase-5 (NDM-5)-producing Enterobacteriaceae isolates is receiving more and more public attention. Twenty-two NDM-5-producing strains were identified from 146 carbapenemase-producing Enterobacteriaceae (CRE) strains isolated from pediatric patients between January and March 2017, indicating that the blaNDM-5 gene has spread to children. All 22 isolates, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, showed significantly high resistance to β-lactam antibiotics (except aztreonam) but remained susceptible to tigecycline and colistin. K. pneumoniae and K. aerogenes strains were respectively defined as homologous clonal isolates by pulsed-field gel electrophoresis (PFGE). Multilocus sequence typing (MLST) results confirmed the genetic relatedness with all K. pneumoniae strains belonging to sequence type (ST) 48. Two E. coli isolates (ST617 and ST1236) were considered genetically unrelated. Twenty-two blaNDM-5 plasmids were positive for the IncX3 amplicon and showed almost identical profiles after digestion with HindIII and EcoRI. Four representative strains (K. pneumoniae K725, K. aerogenes CR33, E. coli Z214, and E. coli Z244) were selected for further study. Plasmids harboring blaNDM-5 showed strong stability in both clinical isolates and transconjugants, without apparent plasmid loss after 100 serial generations. S1-PFGE followed by Southern blot analysis demonstrated that the blaNDM-5 gene was located on an ∼46-kb plasmid. Plasmid sequences of pNDM-K725, pNDM-CR33, and pNDM-Z214 were almost identical but were slightly different from that of pNDM-Z244. Compared with pNDM-Z244, ΔISAba125 and partial copies of IS3000 were missing. The genetic backgrounds of the blaNDM-5 gene in four strains were slightly different from that of the typical pNDM_MGR194. This study comprehensively characterized the horizontal gene transfer of the blaNDM-5 gene among different Enterobacteriaceae isolates in pediatric patients, and the IncX3-type plasmid was responsible for the spread. IMPORTANCE The emergence of CRE strains resistant to multiple antibiotics is considered a substantial threat to human health. Therefore, all the efforts to provide a detailed molecular transmission mechanism of specific drug resistance can contribute positively to prevent the further spread of multidrug-resistant bacteria. Although the new superbug harboring blaNDM-5 has been reported in many countries, it was mostly identified among E. coli strains, and the gene transfer mechanism has not been fully recognized and studied. In this work, we identified 22 blaNDM-5-positive strains in different species of Enterobacteriaceae, including 16 Klebsiella pneumoniae strains, four Klebsiella aerogenes strains, and two Escherichia coli strains, which indicated the horizontal gene transfer of blaNDM-5 among Enterobacteriaceae strains in pediatric patients. Moreover, blaNDM-5 was located on a 46-kb IncX3 plasmid, which is possibly responsible for this widespread horizontal gene transfer. The different genetic contexts of the blaNDM-5 gene indicated some minor evolutions of the plasmid, based on the complete sequences of the blaNDM-5 plasmids. These findings are of great significance to understand the transmission mechanism of drug resistance genes, develop anti-infection treatment, and take effective infection control measures.


Author(s):  
Sulochana Manandhar ◽  
Raphael M. Zellweger ◽  
Nhukesh Maharjan ◽  
Sabina Dongol ◽  
Krishna G. Prajapati ◽  
...  

Abstract Background Multi-drug resistance (MDR) and extensive-drug resistance (XDR) associated with extended-spectrum beta-lactamases (ESBLs) and carbapenemases in Gram-negative bacteria are global public health concerns. Data on circulating antimicrobial resistance (AMR) genes in Gram-negative bacteria and their correlation with MDR and ESBL phenotypes from Nepal is scarce. Methods A retrospective study was performed investigating the distribution of ESBL and carbapenemase genes and their potential association with ESBL and MDR phenotypes in E. coli, Klebsiella spp., Enterobacter spp. and Acinetobacter spp. isolated in a major tertiary hospital in Kathmandu, Nepal, between 2012 and 2018. Results During this period, the hospital isolated 719 E. coli, 532 Klebsiella spp., 520 Enterobacter spp. and 382 Acinetobacter spp.; 1955/2153 (90.1%) of isolates were MDR and half (1080/2153) were ESBL producers. Upon PCR amplification, blaTEM (1281/1771; 72%), blaCTXM-1 (930/1771; 53%) and blaCTXM-8 (419/1771; 24%) were the most prevalent ESBL genes in the enteric bacilli. BlaOXA and blaOXA-51 were the most common blaOXA family genes in the enteric bacilli (918/1771; 25%) and Acinetobacter spp. (218/382; 57%) respectively. Sixteen percent (342/2153) of all isolates and 20% (357/1771) of enteric bacilli harboured blaNDM-1 and blaKPC carbapenemase genes respectively. Of enteric bacilli, Enterobacter spp. was the most frequently positive for blaKPC gene (201/337; 60%). The presence of each blaCTX-M and blaOXA were significantly associated with non-susceptibility to third generation cephalosporins (OR 14.7, p < 0.001 and OR 2.3, p < 0.05, respectively).The presence of each blaTEM, blaCTXM and blaOXA family genes were significantly associated with ESBL positivity (OR 2.96, p < 0.001; OR 14.2, p < 0.001 and OR 1.3, p < 0.05 respectively) and being MDR (OR 1.96, p < 0.001; OR 5.9, p < 0.001 and OR 2.3, p < 0.001 respectively). Conclusions This study documents an alarming level of AMR with high prevalence of MDR ESBL- and carbapenemase-positive ESKAPE microorganisms in our clinical setting. These data suggest a scenario where the clinical management of infected patients is increasingly difficult and requires the use of last-resort antimicrobials, which in turn is likely to intensify the magnitude of global AMR crisis.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Kald Beshir Tuem ◽  
Abadi Kahsu Gebre ◽  
Tesfay Mehari Atey ◽  
Helen Bitew ◽  
Ebrahim M. Yimer ◽  
...  

Background. Antimicrobial drug resistance is a global threat for treatment of infectious diseases and costs life and money and threatens health delivery system’s effectiveness. The resistance ofE. colito frequently utilized antimicrobial drugs is becoming a major challenge in Ethiopia. However, there is no inclusive countrywide study. Therefore, this study intended to assess the prevalence ofE. coliresistance and antimicrobial-specific resistance pattern amongE. coliclinical isolates in Ethiopia.Methods. Articles were retrieved from PubMed, Embase, and grey literature from 2007 to 2017. The main outcome measures were overallE. coliand drug-specific resistance patterns. A random-effects model was used to determine pooled prevalence with 95% confidence interval (CI), using DerSimonian and Laird method. In addition, subgroup analysis was conducted to improve the outcome. The study bias was assessed by Begg’s funnel plot. This study was registered in PROSPERO as follows: PROSPERO 2017: CRD42017070106.Results. Of 164 articles retrieved, 35 articles were included. A total of 19,235 study samples participated in the studies and 2,635E. colistrains were isolated. Overall,E. coliantibacterial resistance was 45.38% (95% confidence interval (CI): 33.50 to 57.27). The resistance pattern ranges from 62.55% in Addis Ababa to 27.51% in Tigray region. The highest resistance ofE. colireported was to ampicillin (83.81%) and amoxicillin (75.79%), whereas only 13.55% ofE. coliisolates showed resistance to nitrofurantoin.Conclusion.E. coliantimicrobial resistance remains high with disparities observed among regions. The bacterium was found to be highly resistant to aminopenicillins. The finding implies the need for effective prevention strategies for theE. colidrug resistance and calls for multifaceted approaches with full involvement of all stakeholders.


Bio-Research ◽  
2020 ◽  
Vol 18 (2) ◽  
Author(s):  
EB Onuigbo ◽  
C Anozie-Ikeanyi ◽  
NE Edeh ◽  
CO Eze ◽  
TH Gugu

The study seeks to evaluate nanoparticles based on chitosan for enhanced delivery of ampicillin in plasmid-mediated drug resistance. Serial dilutions of a mixed population of E. coli was plated on nutrient agar and streaked on Replica-plate 25 random colonies using MacConkey agar with or without ampicillin (100 µg/ml) daily for 96 h. Nanoparticles were prepared by cross-linking chitosan with sodium tripolyphosphate with ampicillin trihydrate adsorbed. Three different batches were prepared for optimization. The nanoparticles were optimized based on encapsulation efficiency, in vitro drug release, pH stability and microbiological assay using two laboratory strains of E. coli. Increased resistance to ampicillin due to possible plasmid transfer was established in vitro after 96 h. The encapsulation efficiency of the three batches was between 21-57 %. The drug release showed a burst effect and slow extended release over 8 h and reached a peak of about 19 % release at the 6 and 7 h in Batch A, B and C. The pH of the particles was stable over a period of 6 d. The nanoparticles containing only 0.075 mg of ampicillin dropped in an agar well plate inoculated with 1 ml of E. coli J62 lac pro trp hispFlac::Tn3 (AmpR) gave an IZD of ≥ 25 mm. Chitosan nanoparticles holds good potentials in potentiating the antibacterial effect of ampicillin against possible plasmid-mediated drug resistance


2017 ◽  
Vol 10 (3) ◽  
pp. 95-101 ◽  
Author(s):  
Ekaterina Kulchavenya ◽  
Andrey Cherednichenko

Background: Urogenital tuberculosis (UGTB) is one of the great imitators; it is commonly masked by urinary tract infections (UTIs). We aimed to estimate how many UGTB patients were among patients with a long history of UTIs. Material and Methods: A total of 244 patients with recurrent UTIs and suspected UGTB were enrolled in an open, noncomparative prospective study. Their urine and expressed prostate secretion or ejaculate were cultured (a total of 1446 samples), and 421 isolates with growth of ⩾104 colony-forming units (CFU)/ml were investigated for drug resistance. Typically, UGTB diagnosis is made by individual case. Results: All 244 patients had a long history of recurrent UTIs (on average, 7.9 ± 3.4 years); all received at least five courses of antibacterial therapy without good result. UGTB was diagnosed in 63 (25.8%), and in 41 of these (65.1%), there was comorbidity of UTI and UGTB. Of 1446 samples investigated, 421 (29.1%) were positive, and 1025 were negative. Escherichia coli was found in 57.3% of gram-negative microflora and in 29.0% only among all uropathogens. E. coli was resistant to amoxicillin/clavulanate in 51.5–57.1%, to cefotaxime in 50.0–52.0%, to gentamycin in 33.3–59.5%, to ciprofloxacin in 63.2–66.7%, to levofloxacin in 54.8–45.2%, and to nitrofurantoin in 23.5–20.8% in 2015 and 2016, respectively. If, in 2015, all isolates of E. coli were susceptible to imipenem, in 2016, 7.1% of strains were resistant to this antibiotic. Level of drug-resistance was higher in 2016, excluding only levofloxacin and nitrofurantoin. Conclusions: Total prevalence of UGTB among UTI patients with poor results of antibacterial therapy was 25.8%. Comorbidity of UTI and UGTB was diagnosed in 65.1%.


2012 ◽  
Vol 56 (1) ◽  
pp. 21-25 ◽  
Author(s):  
Marek Selwet ◽  
Mariola Galbas ◽  
Piotr Dullin

Abstract The presented investigations were conducted on a group of 60 porkers of crossbreed Polish Landrace x Large White Polish. The animals were divided into two equal experimental groups. The control group (K) was fed diets without supplementation with probiotics, group (P) - diets with the addition of probiotic (0.2 kg t-1 feed). The aim of the study was to determine the effect of probiotic preparation on total numberof lactic acid rods from the Lactobacillus genus and those forming hydrogen oxide. The second part of experiment concerned the influence of probiotic preparation on the number, haemolytic ability and changes in drug resistance of Escherichia coli isolated from animal faeces. The significantly highest number of Lactobacillus sp. were determined in the saliva of porkers fed diets with the addition of probiotic, while the lowest in the control group. Lactobacillus sp. rods capable of forming hydrogen peroxide were isolated from 17 animals in group K and from three animals in group P. E. coli was determined in each examined sample of faeces. In groups K and P, counts of these bacteria were similar and did not differ statistically. High numbers of haemolytic isolates (haemolysis β) were found in faeces of animals fed diets with the addition of probiotic. Number and proportions of resistant isolates in groups K and P were different. Gentamicin was characterised by exceptionally high in vitro effectiveness. The used probiotic increased drug resistance of E. coli and increased frequency of incidence of haemolysis β.


Sign in / Sign up

Export Citation Format

Share Document