scholarly journals Chitosan nanoparticle and pyridoxine seed priming improves tolerance to salinity in milk thistle seedling

2020 ◽  
Vol 48 (1) ◽  
pp. 221-233
Author(s):  
Ali Asghar MOSAVIKIA ◽  
Seyed Gholamreza MOSAVI ◽  
Mohammadjavad SEGHATOLESLAMI ◽  
Reza BARADARAN

Application of growth regulators plays important role under salt conditions. Perspectives to overcome these limitations by chitosan nanoparticle (CSNP: 0, 0.25, 0.5, and 1%) and pyridoxine (PN: 0, 0.03, 0.06, and 0.09%) seed priming was studied in both experiments with milk thistle seeds exposed to NaCl as salt stress (0, 50, 100, and 150 mM). Salinity threshold and EC50 (the salinity level that 50% of germination reduction) achieved 74.85 and 213.5 mM, respectively. A significant reduction in germination percentage (49.12%), seedling length (50.07%), and seedling vigor index (67.39%) while, a significant increase in superoxide dismutase activity (54.63%) were achieved at 150 mM NaCl in compared to the control treatment. The highest germination rate was resulted by 100 mM NaCl and 0.25% CSNP and the least (2.86 seed/day) by 150 mM NaCl and without CSNP. The salt stress significantly decreased photosynthetic pigments; however, the largest value of chlorophyll a, b, and total was related to without NaCl and 1% CSNP and the least value of traits (6.1, 1.67, and 7.77 µg/g FW) to non-application of CSNP under 150 mM NaCl. PN application was caused decrease in free proline content compared to the non-application treatment. The most pronounced effects of CSNP and PN were recorded in 0.25 and 0.09% concentrations, respectively. The finding of this study leads to the conclusion that seed priming with CSNP and PN by improving physiological mechanisms such as photosynthetic pigment synthesis, antioxidant enzyme activities, and free proline content increased salt tolerance in milk thistle seedling.

2018 ◽  
Vol 1 ◽  
pp. 19-25 ◽  
Author(s):  
Ja'afar Umar ◽  
Adamu Aliyu ◽  
Kasimu Shehu ◽  
Lawal Abubakar

Many plants accumulate high levels of free proline content (pro) and glycine betaine (GB) in response to abiotic stress, Pro and GB act as an osmoprotectant. Generally, these levels are high than those required to be used in protein synthesis. Salinity inhibition of plant growth is the result of osmotic and ionic effect and different plant species have developed different mechanisms to cope with those effects. In this study, accumulation of osmolytes of twenty tomato genotypes was evaluated in response to salinity stress. The seedlings of each genotype were divided into three groups, Sodium chloride (NaCl) dissolved in irrigation water to make variant concentration of 30 and 60 mg/L of salt concentration using electrical conductivity meter which were used to water the plants. Level of free proline and glycine betaine were measured. Data obtained were subjected to one way analysis of variance using SPSS (20) Statistical Software. Dry mass accumulation decreased with increased salt concentration in all the genotypes. However, the result differ significantly (P< 0.05). The highest dry mass accumulations at control were recorded on Tropimech and Giofranco F. with 6.00 and 5.97. The lowest dry mass accumulations were recorded on plant treated with 60mg/L of salt. Dangainakawa recorded the least accumulation of dry mass on plants treated with 60mg/l of salt with 0.90g followed by Dan Gombe with 1.47g respectively. The highest free proline content of 1.46 µmolg-1was recorded on Dan gainakawa at plant treated with 60 mg/L of NaCl. The lowest proline content was recorded at control on Giofranco F. with 0.17 µmolg-1The highest GB content in all the plants were recorded at plants treated with 60 mg/L. However, the highest GB content (1.67) among the 20 (P<0.05) were recorded at 60 mg/L in Rio Grande followed by Bahaushe with 1.50 µmolg-1. In conclusion, GB and Pro are osmoregulators produced by tomato in response to stress so as to alleviate the consequence effects of salt stress.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Uttam Bhowmik ◽  
Mohammad Golam Kibria ◽  
Mohammad Saidur Rhaman ◽  
Yoshiyuki Murata ◽  
Md. Anamul Hoque

Crop production is unexpectedly hampered by different abiotic stresses. Salinity is one of the leading stresses, which snappishly hampers plant developmental progression. Local rice landraces exhibit noticeable salt tolerance as well as high yield. However, research is scarce about the physio-biochemical responses of local landraces and modern cultivar under saline conditions. Therefore, the present experiment was designed to reveal the physio-biochemical responses of local landraces and modern cultivar under salinity stress. Five landraces (Jotai, Icheburogolghor, Morishal, Chapail, Kumro buro) and two modern cultivars (BR23 and BRRI dhan41) were subjected to 0, 20, 40, 60 and 80 mM NaCl treatment. The effects of salt stress on morphological parameters, proline contents, and activities of antioxidant enzymes were assessed. Salt stress reduces the morphological parameters of all tested cultivars. The Morishal and BRRI dhan41 exhibited higher growth of plant and physiological parameters than other cultivars under the highest salinity. The catalase (CAT) and ascorbate peroxidase (APX), exhibited a significant increase whereas peroxidase (POX) activity significantly declined in all the cultivars under salinity stress. Morishal and BRRI dhan41 showed the highest proline content under the maximum saline condition. These results suggest that the high tolerant landrace and modern cultivars were Morishal and BRRI dhan41 respectively. These results also suggest that Morishal and BRRI dhan41 exhibited high tolerance to salinity by enhancing proline content and antioxidant enzyme activities.


2019 ◽  
pp. 332-347

An experiment conducted in pots under field conditions in the fall seasons of 2017 and 2018 at the College of Agricultural Engineering Sciences, University of Baghdad, to improve the field emergence in sorghum, in which three factors were studied. 1st factor was the variety (three varieties: Inqath, Rabeh and Buhoth70). 2nd factor was priming treatment (unprimed seed and primed seed soaked for 12 hours in a solution containing 300 + 70 ml L-1 of gibberellic and salicylic acids, respectively). 3rd factor was saline stress (tap water as control (1.26), 6, 9 and 12 dS m-1). RCBD design was used with four replicates. The results showed that Buhoth70 cultivar exceeded the others; also the primed seed exceeded the unprimed seed in the traits of the first and final count of emergence, daily emergence rate, emergence energy, emergence rate index and emergence index in both seasons. The control treatment was superior in the above traits, while the values of these traits decreased as the saline increased, and no emergence accrued at the highest concentration (12 dS m-1) in both seasons. The cultivars varied in their ability to withstand salt stress at the same stress level, and that the seed priming treatment has improved their performance to withstand salt stress compared to the unprimed in both seasons. It can conclude that there is a role for genotype and seed priming in improving seedling performance to tolerate salt stress.


HortScience ◽  
2020 ◽  
Vol 55 (5) ◽  
pp. 647-650
Author(s):  
Xu-Wen Jiang ◽  
Cheng-Ran Zhang ◽  
Wei-Hua Wang ◽  
Guang-Hai Xu ◽  
Hai-Yan Zhang

The effects of CaCl2, GA3, and H2O2 priming on Isatis indigotica Fort. seed germination characteristics, seedling growth parameters, and antioxidant enzyme activities under salt stress were investigated. NaCl had an adverse effect on the germination and seedling performance of I. indigotica. However, these three priming agents alleviated salt stress by increasing the germination percentage, improving seed vigor, accelerating germination velocity, and establishing strong seedlings. The optimal concentrations were 15 g/L for CaCl2, 0.2 g/L for GA3, and 40 mm for H2O2. Seed priming treatments enhanced the activities of antioxidant enzymes in seedlings, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), under a salt environment, which reduced the oxidative injury caused by salt. Seed priming is a promising technique that can enhance the ability of I. indigotica seed germination when salt is present.


2021 ◽  
Vol 43 ◽  
pp. e52006
Author(s):  
Ana Alessandra da Costa ◽  
Emanoela Pereira de Paiva ◽  
Salvador Barros Torres ◽  
Kleane Targino de Oliveira Pereira ◽  
Moadir de Sousa Leite ◽  
...  

Salvia hispanica L. is an alternative crop cultivated by farmers who want to diversify their production. However, this species is sensitive to salinity, which affects its germination negatively. Seed priming with different attenuators is a technique with potential to mitigate the effects of salt stress. Thus, the objective of this study was to evaluate the effect of seed priming with the use of different attenuators on the germination, growth, and organic solute accumulation of S. hispanica seedlings under salt stress. The experimental design was completely randomized, with treatments distributed in a 4 × 5 factorial scheme, corresponding to four seed priming treatments and five osmotic potentials, with four replicates of 50 seeds in each treatment. The seed treatments consisted of presoaking seeds for 4h in salicylic acid, gibberellic acid, and distilled water and the control treatment, which did not involve soaking. These seeds were germinated at osmotic potentials of 0.0, -0.1, -0.2, -0.3, and -0.4 MPa, using NaCl as an osmotic agent to simulate the different salinity levels. Among all the treatments implemented, S. hispanica seed priming with salicylic acid was the most efficient in mitigating the salt stress effects.


2019 ◽  
pp. 1856-1864 ◽  
Author(s):  
André Dias de Azevedo Neto ◽  
Renata Velasques Menezes ◽  
Hans Raj Gheyi ◽  
Petterson Costa Conceição Silva ◽  
Alide Mitsue Watanabe Cova ◽  
...  

The aim of this study was to evaluate the effect of salt stress on the contents of inorganic and organic solutes, pigments and essential oil in two basil genotypes cultivated in hydroponic system. The experiment was carried out in a greenhouse. Treatments were distributed in randomized blocks, in a 2 × 2 factorial arrangement, corresponding to two contrasting genotypes (‘Toscano folha de alface’ (TFA) and ‘Gennaro de menta’ (GM)) and two salt levels (0 - control and 80 mM NaCl), with six replicates. The Na+, Cl- and K+ accumulation in the leaves, stem and roots did not differ between genotypes. Salt stress increased free amino acids accumulation in the leaves of the TFA genotype. The proline content increased in the roots of both genotypes. However, in GM genotype, the proline content (3.12 mmol g-1 dry mass (DM)) was around 2-fold greater when compared to TFA genotype (1.48 mmol g-1 DM). The salt stress increased the photosynthetic pigments content only in the GM genotype. Inorganic solutes and photosynthetic pigments content are not good indicators of salt-tolerance in the studied genotypes. Under salt stress, there was increase in oil content in GM genotype, while the TFA genotype showed a decrease compared to control treatment. In spite of showing lower oil content, the TFA genotype showed higher yield and productivity of essential oil compared to GM under salt stress conditions.


Author(s):  
Hatice Tunca ◽  
Ali Doğru ◽  
Feray Köçkar ◽  
Burçin Önem ◽  
Tuğba Ongun Sevindik

Azadirachtin (Aza) used as insecticide due to inhibiting growth of insects and preventing them from feeding on plants. To understand the effects of contamination of this insecticide on phototrophs, and to determine the responses of these organisms against these insecticides are extremely important in understanding how the ecosystem is affected. In this study, chlorophyll-a amount, OD 560 and antioxidant parameters (total SOD, APX, GR, Proline, MDA and H2O2) were determined in order to understand the effect of Aza on Arthrospira platensis Gomont. Aza was applied between 0–20 μg mL−1 concentrations for 7 days in the study. Enzyme analysis was conducted at the end of the 7th day. There was a statistically significant decrease in the absorbance of OD560 and the chlorophyll-a content in A. platensis cultures exposed to the Aza (0–20 μg mL−1) during 7 days due to the increase in pesticide levels. SOD activity decreased at 8, 16 and 20 μg mL−1 concentrations; GR enzyme activity showed a significant decrease compared to the control at a concentration of 20 μg mL−1. APX activity did not change significantly compared to control. The MDA content increased significantly at 16 and 20 μg mL−1 concentrations. The H2O2 content significantly increased at 12, 16 and 20 μg mL−1 concentrations (p < 0.05) while the free proline content decreased at 4 μg mL−1 concentration (p < 0.05). As a result, regarding the Aza concentrations used in this study may be a step to prevent pesticide pollution in the environment.


HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 296-300 ◽  
Author(s):  
M.R. Foolad ◽  
G.Y. Lin

Seed of 42 wild accessions (Plant Introductions) of Lycopersicon pimpinellifolium Jusl., 11 cultigens (cultivated accessions) of L. esculentum Mill., and three control genotypes [LA716 (a salt-tolerant wild accession of L. pennellii Corr.), PI 174263 (a salt-tolerant cultigen), and UCT5 (a salt-sensitive breeding line)] were evaluated for germination in either 0 mm (control) or 100 mm synthetic sea salt (SSS, Na+/Ca2+ molar ratio equal to 5). Germination time increased in response to salt-stress in all genotypes, however, genotypic variation was observed. One accession of L. pimpinellifolium, LA1578, germinated as rapidly as LA716, and both germinated more rapidly than any other genotype under salt-stress. Ten accessions of L. pimpinellifolium germinated more rapidly than PI 174263 and 35 accessions germinated more rapidly than UCT5 under salt-stress. The results indicate a strong genetic potential for salt tolerance during germination within L. pimpinellifolium. Across genotypes, germination under salt-stress was positively correlated (r = 0.62, P < 0.01) with germination in the control treatment. The stability of germination response at diverse salt-stress levels was determined by evaluating germination of a subset of wild, cultivated accessions and the three control genotypes at 75, 150, and 200 mm SSS. Seeds that germinated rapidly at 75 mm also germinated rapidly at 150 mm salt. A strong correlation (r = 0.90, P < 0.01) existed between the speed of germination at these two salt-stress levels. At 200 mm salt, most accessions (76%) did not reach 50% germination by 38 days, demonstrating limited genetic potential within Lycopersicon for salt tolerance during germination at this high salinity.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 696
Author(s):  
Reem H. Alzahib ◽  
Hussein M. Migdadi ◽  
Abdullah A. Al Ghamdi ◽  
Mona S. Alwahibi ◽  
Abdullah A. Ibrahim ◽  
...  

Understanding salt tolerance in tomato (Solanum lycopersicum L.) landraces will facilitate their use in genetic improvement. The study assessed the morpho-physiological variability of Hail tomato landraces in response to different salinity levels at seedling stages and recommended a tomato salt-tolerant landrace for future breeding programs. Three tomato landraces, Hail 548, Hail 747, and Hail 1072 were tested under three salinity levels: 75, 150, and 300 mM NaCl. Salinity stress reduced shoots’ fresh and dry weight by 71% and 72%, and roots were 86.5% and 78.6%, respectively. There was 22% reduced chlorophyll content, carotene content by 18.6%, and anthocyanin by 41.1%. Proline content increased for stressed treatments. The 300 mM NaCl treatment recorded the most proline content increases (67.37 mg/g fresh weight), with a percent increase in proline reaching 61.67% in Hail 747. Superoxide dismutase (SOD) activity decreased by 65% in Hail 548, while it relatively increased in Hail 747 and Hail 1072 treated with 300 mM NaCl. Catalase (CAT) activity was enhanced by salt stress in Hail 548 and recorded 7.6%, increasing at 75 and 5.1% at 300 mM NaCl. It revealed a reduction in malondialdehyde (MDA) at the 300 mM NaCl concentration in both Hail 548 and Hail 1072 landraces. Increasing salt concentrations showed a reduction in transpiration rate of 70.55%, 7.13% in stomatal conductance, and 72.34% in photosynthetic rate. K+/Na+ ratios decreased from 56% for 75 mM NaCl to 85% for 300 mM NaCl treatments in all genotypes. The response to salt stress in landraces involved some modifications in morphology, physiology, and metabolism. The landrace Hail 548 may have better protection against salt stress and observed protection against reactive oxygen species (ROS) by increasing enzymatic “antioxidants” activity under salt stress.


Sign in / Sign up

Export Citation Format

Share Document