scholarly journals Screening of rice genotypes for salt tolerance by physiological and biochemical characters

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Uttam Bhowmik ◽  
Mohammad Golam Kibria ◽  
Mohammad Saidur Rhaman ◽  
Yoshiyuki Murata ◽  
Md. Anamul Hoque

Crop production is unexpectedly hampered by different abiotic stresses. Salinity is one of the leading stresses, which snappishly hampers plant developmental progression. Local rice landraces exhibit noticeable salt tolerance as well as high yield. However, research is scarce about the physio-biochemical responses of local landraces and modern cultivar under saline conditions. Therefore, the present experiment was designed to reveal the physio-biochemical responses of local landraces and modern cultivar under salinity stress. Five landraces (Jotai, Icheburogolghor, Morishal, Chapail, Kumro buro) and two modern cultivars (BR23 and BRRI dhan41) were subjected to 0, 20, 40, 60 and 80 mM NaCl treatment. The effects of salt stress on morphological parameters, proline contents, and activities of antioxidant enzymes were assessed. Salt stress reduces the morphological parameters of all tested cultivars. The Morishal and BRRI dhan41 exhibited higher growth of plant and physiological parameters than other cultivars under the highest salinity. The catalase (CAT) and ascorbate peroxidase (APX), exhibited a significant increase whereas peroxidase (POX) activity significantly declined in all the cultivars under salinity stress. Morishal and BRRI dhan41 showed the highest proline content under the maximum saline condition. These results suggest that the high tolerant landrace and modern cultivars were Morishal and BRRI dhan41 respectively. These results also suggest that Morishal and BRRI dhan41 exhibited high tolerance to salinity by enhancing proline content and antioxidant enzyme activities.

Author(s):  
Ramazan Beyaz ◽  
Cengiz Sancak ◽  
Mustafa Yildiz

This study was conducted to evaluate the effect of different NaCl concentrations (0, 100 and 150 mM) on the morphological and biochemical parameters of different sainfoin ecotypes ‘Koçaº’, ‘Malya,’ ‘Altýnova’ and ‘Ulaþ’ under controlled conditions. The morphological parameters included seed germination, seedling and root lengths, and seedling fresh and dry weights while the biochemical parameters included chlorophyll and proline contents, lipid peroxidation (MDA), and the activities of antioxidant enzymes (SOD, CAT, APX, and GR). The results demonstrated that increase in NaCl concentration caused an overall decrease in morphological parameters and an increase in the biochemical parameters in all ecotypes. The findings showed that among all ecotypes, ‘Koçaþ’ had higher chlorophyll and proline content, increased activity of CAT, GR, and APX, and increased fresh and dry weight in response to salt stress. To the best of our knowledge, this is the first report on the evaluation of enzymatic and non-enzymatic defense systems in sainfoin plants under salt stress.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 696
Author(s):  
Reem H. Alzahib ◽  
Hussein M. Migdadi ◽  
Abdullah A. Al Ghamdi ◽  
Mona S. Alwahibi ◽  
Abdullah A. Ibrahim ◽  
...  

Understanding salt tolerance in tomato (Solanum lycopersicum L.) landraces will facilitate their use in genetic improvement. The study assessed the morpho-physiological variability of Hail tomato landraces in response to different salinity levels at seedling stages and recommended a tomato salt-tolerant landrace for future breeding programs. Three tomato landraces, Hail 548, Hail 747, and Hail 1072 were tested under three salinity levels: 75, 150, and 300 mM NaCl. Salinity stress reduced shoots’ fresh and dry weight by 71% and 72%, and roots were 86.5% and 78.6%, respectively. There was 22% reduced chlorophyll content, carotene content by 18.6%, and anthocyanin by 41.1%. Proline content increased for stressed treatments. The 300 mM NaCl treatment recorded the most proline content increases (67.37 mg/g fresh weight), with a percent increase in proline reaching 61.67% in Hail 747. Superoxide dismutase (SOD) activity decreased by 65% in Hail 548, while it relatively increased in Hail 747 and Hail 1072 treated with 300 mM NaCl. Catalase (CAT) activity was enhanced by salt stress in Hail 548 and recorded 7.6%, increasing at 75 and 5.1% at 300 mM NaCl. It revealed a reduction in malondialdehyde (MDA) at the 300 mM NaCl concentration in both Hail 548 and Hail 1072 landraces. Increasing salt concentrations showed a reduction in transpiration rate of 70.55%, 7.13% in stomatal conductance, and 72.34% in photosynthetic rate. K+/Na+ ratios decreased from 56% for 75 mM NaCl to 85% for 300 mM NaCl treatments in all genotypes. The response to salt stress in landraces involved some modifications in morphology, physiology, and metabolism. The landrace Hail 548 may have better protection against salt stress and observed protection against reactive oxygen species (ROS) by increasing enzymatic “antioxidants” activity under salt stress.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 545
Author(s):  
Kumar Nishant Chourasia ◽  
Milan Kumar Lal ◽  
Rahul Kumar Tiwari ◽  
Devanshu Dev ◽  
Hemant Balasaheb Kardile ◽  
...  

Among abiotic stresses, salinity is a major global threat to agriculture, causing severe damage to crop production and productivity. Potato (Solanum tuberosum) is regarded as a future food crop by FAO to ensure food security, which is severely affected by salinity. The growth of the potato plant is inhibited under salt stress due to osmotic stress-induced ion toxicity. Salinity-mediated osmotic stress leads to physiological changes in the plant, including nutrient imbalance, impairment in detoxifying reactive oxygen species (ROS), membrane damage, and reduced photosynthetic activities. Several physiological and biochemical phenomena, such as the maintenance of plant water status, transpiration, respiration, water use efficiency, hormonal balance, leaf area, germination, and antioxidants production are adversely affected. The ROS under salinity stress leads to the increased plasma membrane permeability and extravasations of substances, which causes water imbalance and plasmolysis. However, potato plants cope with salinity mediated oxidative stress conditions by enhancing both enzymatic and non-enzymatic antioxidant activities. The osmoprotectants, such as proline, polyols (sorbitol, mannitol, xylitol, lactitol, and maltitol), and quaternary ammonium compound (glycine betaine) are synthesized to overcome the adverse effect of salinity. The salinity response and tolerance include complex and multifaceted mechanisms that are controlled by multiple proteins and their interactions. This review aims to redraw the attention of researchers to explore the current physiological, biochemical and molecular responses and subsequently develop potential mitigation strategies against salt stress in potatoes.


2017 ◽  
Vol 63 (No. 12) ◽  
pp. 545-551 ◽  
Author(s):  
Wu Guo-Qiang ◽  
Liu Hai-Long ◽  
Feng Rui-Jun ◽  
Wang Chun-Mei ◽  
Du Yong-Yong

The objective of this study was to investigate whether the application of silicon (Si) ameliorates the detrimental effects of salinity stress on sainfoin (Onobrychis viciaefolia). Three-week-old seedlings were exposed to 0 and 100 mmol/L NaCl with or without 1 mmol/L Si for 7 days. The results showed that salinity stress significantly reduced plant growth, shoot chlorophyll content and root K<sup>+</sup> concentration, but increased shoot malondialdehyde (MDA) concentration, relative membrane permeability (RMP) and Na<sup>+</sup> concentrations of shoot and root in sainfoin compared to the control (no added Si and NaCl). However, the addition of Si significantly enhanced growth, chlorophyll content of shoot, K<sup>+</sup> and soluble sugars accumulation in root, while it reduced shoot MDA concentration, RMP and Na<sup>+</sup> accumulation of shoot and root in plants under salt stress. It is clear that silicon ameliorates the adverse effects of salt stress on sainfoin by limiting Na<sup>+</sup> uptake and enhancing selectivity for K<sup>+</sup>, and by adjusting the levels of organic solutes. The present study provides physiological insights into understanding the roles of silicon in salt tolerance in sainfoin.


2011 ◽  
Vol 356-360 ◽  
pp. 2542-2550
Author(s):  
Dan Su ◽  
Nian Lai Chen ◽  
Tian Peng Gao ◽  
Chun Yan Wang ◽  
Hong Mei Sheng ◽  
...  

We evaluated the effects of silicon , potassium, and calcium on the salt-tolerant plant Halocnemum strobilaceum (Pal.l) Bie under salt stress. The experimental treatments consisted of a NaCl-only treatment (150, 450, or 900 mmol/l NaCl), a complex salts treatment (NaCl with K+, Ca2+,andSi+at total concentrations of 150, 450, or 900 mmol/l;(Na+:K+:Ca2+:Si+=1:0.03:0.14:0.004), and a control with no complex ions or NaCl. After 20 and 60 days of treatments, we investigated activities of the major antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), as well as succulence and the contents of malondialdehyde (MDA), proline(Pro) and glycine betain (GB). We found that additions of K+, Ca2+, and Si+partially alleviated the negative effects of salinity stress by increasing the salt tolerance of the plant. The improved salt tolerance was associated with increased Pro, GB,and increased activities of SOD, CAT, and POD,and decrease MDA. In contrast, the NaCl-only treatments caused marked decreases in succulence and soluble protein contents. The results of these experiments suggest that K+, Ca2+, and Si+can alleviate the damaging effects of salt on H. strobilaceum by preventing oxidative membrane and oxidant enzyme activities damage, and that they may be associated with osmotic adjustment.


2020 ◽  
Vol 41 (01) ◽  
Author(s):  
P. K. Nimbolkar ◽  
Jyoti Bajeli ◽  
Arunima Tripathi ◽  
A. K. Chaube

Salinity in soil and water is a critical factor that is causing hindrance in crop production under salt affected areas. Plant metabolic activities are apparently restricted due to accumulation of salt. The event of salt stress happens to be the reason of severe alteration in the sequence of plant growth and development which ultimately reduces the survivability of plants. The physiological and biochemical mechanisms of tolerance to various osmotic and ionic components of salinity stress are evaluated at the cellular, organ and whole plant level. The course of adaptation towards salinity stress could be of various types such as avoidance, exclusion, extrusion, ion compartmentalization etc. Appropriate understanding of mechanism involved in salt tolerance at different levels in plant tissues provide a new opportunity to integrate physiological and biochemical knowledge to improve the salinity tolerance of fruit crops, especially from the nutritional aspect. Such information not only helpful in escalating the productivity in salt affected areas, but also facilitate in bringing relatively more salt affected areas under cultivation.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10832
Author(s):  
Fengman Yin ◽  
Shanying Zhang ◽  
Bili Cao ◽  
Kun Xu

We investigated the effects of low pH on the photosynthesis, chlorophyll fluorescence, and mineral contents of the leaves of ginger plants under salt stress. This experiment involved four treatments: T1 (pH 6, 0 salinity), T2 (pH 4, 0 salinity), T3 (pH 6, 100 mmol L−1 salinity) and T4 (pH 4, 100 mmol L−1 salinity). This study showed that photosynthesis (Pn, Gs, WUE and Tr) and chlorophyll fluorescence (qP, Φ PSII, and Fv/Fm) significantly decreased under salt stress; however, all the parameters of the ginger plants under the low-pH treatment and salt stress recovered. Moreover, low pH reduced the content of Na and enhanced the contents of K, Mg, Fe and Zn in the leaves of ginger plants under salt stress. Taken together, these results suggest that low pH improves photosynthesis efficiency and nutrient acquisition and reduces the absorption of Na, which could enhance the salt tolerance of ginger.


2021 ◽  
Vol 22 (17) ◽  
pp. 9402
Author(s):  
Tiantian Gan ◽  
Ziwei Lin ◽  
Lijun Bao ◽  
Tian Hui ◽  
Xiaopeng Cui ◽  
...  

Mulberry, an important woody tree, has strong tolerance to environmental stresses, including salinity, drought, and heavy metal stress. However, the current research on mulberry resistance focuses mainly on the selection of resistant resources and the determination of physiological indicators. In order to clarify the molecular mechanism of salt tolerance in mulberry, the physiological changes and proteomic profiles were comprehensively analyzed in salt-tolerant (Jisang3) and salt-sensitive (Guisangyou12) mulberry varieties. After salt treatment, the malondialdehyde (MDA) content and proline content were significantly increased compared to control, and the MDA and proline content in G12 was significantly lower than in Jisang3 under salt stress. The calcium content was significantly reduced in the salt-sensitive mulberry varieties Guisangyou12 (G12), while sodium content was significantly increased in both mulberry varieties. Although the Jisang3 is salt-tolerant, salt stress caused more reductions of photosynthetic rate in Jisang3 than Guisangyou12. Using tandem mass tags (TMT)-based proteomics, the changes of mulberry proteome levels were analyzed in salt-tolerant and salt-sensitive mulberry varieties under salt stress. Combined with GO and KEGG databases, the differentially expressed proteins were significantly enriched in the GO terms of amino acid transport and metabolism and posttranslational modification, protein turnover up-classified in Guisangyou12 while down-classified in Jisang3. Through the comparison of proteomic level, we identified the phenylpropanoid biosynthesis may play an important role in salt tolerance of mulberry. We clarified the molecular mechanism of mulberry salt tolerance, which is of great significance for the selection of excellent candidate genes for saline-alkali soil management and mulberry stress resistance genetic engineering.


2020 ◽  
Vol 21 (13) ◽  
pp. 4586 ◽  
Author(s):  
Yujie Qu ◽  
Quandong Nong ◽  
Shuguang Jian ◽  
Hongfang Lu ◽  
Mingyong Zhang ◽  
...  

Pitaya (Hylocereus undatus) is a high salt-tolerant fruit, and ethylene response factors (ERFs) play important roles in transcription-regulating abiotic tolerance. To clarify the function of HuERF1 in the salt tolerance of pitaya, HuERF1 was heterogeneously expressed in Arabidopsis. HuERF1 had nuclear localization when HuERF1::GFP was expressed in Arabidopsis protoplasts and had transactivation activity when HuERF1 was expressed in yeast. The expression of HuERF1 in pitaya seedlings was significantly induced after exposure to ethylene and high salinity. Overexpression of HuERF1 in Arabidopsis conferred enhanced tolerance to salt stress, reduced the accumulation of superoxide (O2 · ¯ ) and hydrogen peroxide (H2O2), and improved antioxidant enzyme activities. These results indicate that HuERF1 is involved in ethylene-mediated salt stress tolerance, which may contribute to the salt tolerance of pitaya.


Sign in / Sign up

Export Citation Format

Share Document