scholarly journals Antifungal Activity of Fruit Extracts of Different Water Chestnut Varieties

2011 ◽  
Vol 3 (1) ◽  
pp. 61-64
Author(s):  
Mohammad ANOWAR RAZVY ◽  
Ahmad Humayan KABIR ◽  
Mohammad AMINUL HOQUE

The antifungal activity of three varieties (red, green and wild) of water chestnut fruit extracts was studied against a number of fungal species. A strong antifungal activity of ethanol and petroleum extract was found against the treated fungi resulting remarkable inhibition zone in comparison to both Dithane-M45 fungicide and control. It has also been evident that wild variety of water chestnut was comparatively more efficient in respect to antifungal activity compared to the red and green variety of the same plant.

2020 ◽  
pp. 216-220
Author(s):  
P. Venkatachalam ◽  
C.V. Chittibabu

The present study was aimed to investigate the anticandidal and antifungal potential of dried fruit extracts of Terminalia chebula against Candida albicans, C. tropicalis C. glabrata, C. krusei, C. parapsilosis, and Aspergillus flavus, A. niger, A. fumigatus, Trichophyton mentagrophytes, T. rubrum, Microsporum gypseum. Phytochemical analysis of methanol extracts of T. chebula dried fruits showed the presence of flavonoids, alkaloids, glycosides, saponins, tannins, terpenoids and steroids. Among the tested four extracts, the methanol extracts of T. chebula dried fruits exhibited the highest antifungal activity and their inhibition zone was ranged between 7.5 to 19.5mm. MIC and MFC values were between 62.5-250μg/ml and 250-500μg/ml respectively. Zone of inhibition (19.5 mm), MIC (62.5µg/ml) and MFC (125µg/ml) values observed in methanolic extracts of T. chebula dried fruits against A. fumigates and T. mentagrophytes. Our findings proved that methanolic extracts of T. chebula dried fruits were possessed substantial anticandidal and antifungal properties.


Author(s):  
Sabreen A Kamal ◽  
Ishraq A Salih ◽  
Hawraa Jawad Kadhim ◽  
Zainab A Tolaifeh

Red rose or roselle (beauty rose ) is natively known as red tea belong to Malvaceae, it is flowers use traditionally for antihypertensive hepato protective, anticancer,antidiabetic,antibacterial, cytotoxicity and antidiarreal, By preparing red tea from it's flower. In this study, we extract chemical compounds by using two solvent which are Ethanol, Ethyl acetate. so we can extract Anthocyanin which is responsible for red colour of flower with many chemical compounds. then study the effect of these extracts on 5 genera from Enterobacteriacaea which can cause diarrheae (Shigella, Salmonella, Escherichia coli, Proteus and Klebsiella ) by preparing 3 concentrations for each solvent (250, 500, 750 ) mg/ml, and control then compare with two antibiotic (Azereonam 30 mg/ml and Bacitracin 10 mg/ml ) these extracts revealed obvious inhibition zone in bacterial growth.


Author(s):  
M. Linga Rao ◽  
Bhumi G ◽  
Savithramma N

Silver nanoparticles (SNPs) exhibit tremendous applications in medicine as antimicrobial agent.  The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals.  In the present study, we report a rapid biosynthesis of silver nanoparticles from aqueous leaf extract of medicinal plant Allamanda cathartica.  The active phytochemicals present in the plant were responsible for the quick reduction of silver ion to metallic silver nanoparticles. The reduced silver nanoparticles were characterized by using UV-Vis spectrophotometry, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-ray (EDAX) and Atomic Force Microscopy (AFM).  The spherical shaped silver nanoparticles were observed and it was found to 19-40 nm range of size.  These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. A. cathartica aqueous leaf extract of SNPs showed highest toxicity to Pseudomonas followed by Klebsiella, Bacillus and E. coli and lowest toxicity towards Proteus. In fungal species, highest inhibition zone was noted against Rhizopus followed by Curvularia, Aspergillus flavus and Aspergillus niger and minimum inhibition zone was observed against Fusarium species.  These results suggest a promising potential of Indian plant-based green chemistry for production of SNPs for biomedical and nanotechnology applications.


2020 ◽  
Vol 20 (29) ◽  
pp. 2681-2691
Author(s):  
Athina Geronikaki ◽  
Victor Kartsev ◽  
Phaedra Eleftheriou ◽  
Anthi Petrou ◽  
Jasmina Glamočlija ◽  
...  

Background: Although a great number of the targets of antimicrobial therapy have been achieved, it remains among the first fields of pharmaceutical research, mainly because of the development of resistant strains. Docking analysis may be an important tool in the research for the development of more effective agents against specific drug targets or multi-target agents 1-3. Methods: In the present study, based on docking analysis, ten tetrahydrothiazolo[2,3-a]isoindole derivatives were chosen for the evaluation of the antimicrobial activity. Results: All compounds showed antibacterial activity against eight Gram-positive and Gram-negative bacterial species being, in some cases, more potent than ampicillin and streptomycin against all species. The most sensitive bacteria appeared to be S. aureus and En. Cloacae, while M. flavus, E. coli and P. aeruginosa were the most resistant ones. The compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited good antifungal activity better than reference drugs bifonazole (1.4 – 41 folds) and ketoconazole (1.1 – 406 folds) against all fungal species. In order to elucidate the mechanism of action, docking studies on different antimicrobial targets were performed. Conclusion: According to docking analysis, the antifungal activity can be explained by the inhibition of the CYP51 enzyme for most compounds with a better correlation of the results obtained for the P.v.c. strain (linear regression between estimated binding Energy and log(1/MIC) with R 2 =0.867 and p=0.000091 or R 2 = 0.924, p= 0.000036, when compound 3 is excluded.


Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Magdaléna Kapustová ◽  
Giuseppe Granata ◽  
Edoardo Napoli ◽  
Andrea Puškárová ◽  
Mária Bučková ◽  
...  

Nanotechnology is a new frontier of this century that finds applications in various fields of science with important effects on our life and on the environment. Nanoencapsulation of bioactive compounds is a promising topic of nanotechnology. The excessive use of synthetic compounds with antifungal activity has led to the selection of resistant fungal species. In this context, the use of plant essential oils (EOs) with antifungal activity encapsulated in ecofriendly nanosystems could be a new and winning strategy to overcome the problem. We prepared nanoencapsules containing the essential oils of Origanum vulgare (OV) and Thymus capitatus (TC) by the nanoprecipitation method. The colloidal suspensions were characterized for size, polydispersity index (PDI), zeta potential, efficiency of encapsulation (EE) and loading capacity (LC). Finally, the essential oil nanosuspensions were assayed against a panel of fourteen fungal strains belonging to the Ascomycota and Basidiomycota phyla. Our results show that the nanosystems containing thyme and oregano essential oils were active against various fungal strains from natural environments and materials. In particular, the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were two to four times lower than the pure essential oils. The aqueous, ecofriendly essential oil nanosuspensions with broad-spectrum antifungal activity could be a valid alternative to synthetic products, finding interesting applications in the agri-food and environmental fields.


2014 ◽  
Vol 43 (2) ◽  
pp. 137-142 ◽  
Author(s):  
Cíntia Lima Gouveia ◽  
Isabelle Cristine Melo Freire ◽  
Maria Luísa de Alencar e Silva Leite ◽  
Rebeca Dantas Alves Figueiredo ◽  
Leopoldina de Fátima Dantas de Almeida ◽  
...  

Introduction: The effectiveness of antimicrobial solutions employed in dental prosthesis decontamination is still uncertain. Aim: To evaluate the antifungal activity of cleaners used in the decontamination of dental prostheses on the growth of Candida albicans. Material and method: The evaluated products were: Corega Tabs(r) (S1), Sodium Hypochlorite 1% (S2), Sodium Bicarbonate 1% (S3), Hydrogen Peroxide 1% (S4), Chlorhexidine Digluconate 0.12% - Periogard (r) (S5), Mouthrinse based on essential oils - Listerine(r) (S6), essential oil from Rosmarinus officinalis (rosemary) at concentrations of 1% (S7) and 2% (S8). The antifungal activity of the products was evaluated by agar diffusion technique and the determination of microbial death curve of samples of C. albicans (ATCC 90028) in concentration 1.5 × 106 CFU/mL. The tests were performed in triplicate and statistical analysis was made by ANOVA Two-Way and Tukey tests, with the confidence level of 95%. Result: The average of the zones of inhibition growth, in millimeters, obtained for the products were: 0.0 (S1), 44.7 (S2), 0.0 (S3), 21.6 (S4), 10.0 (S5), 6.1 (S6), 0.0 (S7) and 2.4 (S8). Considering the determination of microbial death curve, all products showed a statistical difference (p<0.01) from control (0.85% sodium chloride) and S3 groups. Fungal growth less than 2×104 CFU/mL and an accentuation of the microbial death curve were observed after 30 minutes, with exception for S3 and control groups. Conclusion: The studied compounds, with the exception of Sodium Bicarbonate, have antifungal effect against C. albicans, which contribute for dental prostheses hygiene.


2019 ◽  
Vol 10 (2) ◽  
pp. 1228-1232
Author(s):  
Shebi S ◽  
Geetha RV ◽  
Lakshmi Thangavelu Lakshmi Thangavelu

An antifungal medication, also known as an antimycotic medication, is a pharmaceutical fungicide or fungistatic used to treat and prevent mycoses such as athlete's foot, ringworm, candidiasis, serious systemic infections such as Cryptococcal meningitis, and others. In traditional medicine, extracts and essential oil from flowers and leaves are used in the belief they may be useful to treat a variety of fungal disorders. The aim of this study was to analyse the antimycotic properties of rosemary oil and its principal components. The Rosemary oil was screened for antifungal activity by the disc diffusion method. Activated cultures of Candida albicans in Sabouraud’s broth was adjusted to 0.5 McFarland standards [108cfu/ml]. 100 µl of the inoculum was introduced to molten Sabourauds dextrose agar and poured in the sterile Petri plates and allowed to set. Sterile filter paper discs (6.0 mm diameter) impregnated with 25µl, 50µl and 100µl /disc were placed on fungal seeded plates and incubated at 28oC for 48 hrs. Clear zones within which fungal growth was absent were measured and recorded as the diameter (mm) of complete growth inhibition. All the concentrations of the test solution inhibited the fungal species with varying degree of sensitivity. The extract showed good antifungal activity at different concentrations with a maximum zone of inhibition of 38 mm at concentration 100µl. This study provides a sample large enough to determine the antifungal properties of Rosemary oil and suggests further studies for possible therapeutic use.


2017 ◽  
pp. 201-207 ◽  
Author(s):  
Dragana Plavsic ◽  
Gordana Dimic ◽  
Djordje Psodorov ◽  
Dragan Psodorov ◽  
Ljubisa Saric ◽  
...  

Aromatic plants are one of the most important sources of biologically active secondary metabolites, which possess various antimicrobial characteristics. The aim of this work was to examine the effect of antifungal activities of mint and caraway essential oils against the selected fungi. Eight species of molds were selected for antifungal testing: Alternaria alternata, Aspegillus flavus, A. niger, A. versicolor, Eurotium herbariorum, Penicillium aurantiogriseum, P. chrysogenum and P. expansum. Testing of essential oils antifungal activity against the selected species was conducted using the disc diffusion method by adding mint and caraway essential oils (0.5, 1, 5, and 10 ?l per disc). Antifungal activity of essential oils was expressed by the diameter of inhibition zone (mm). The most powerful effect of mint essential oil was recorded against E. herbariorum, as its growth was completely inhibited by the quantity of 5 ?l. The weakest inhibitory effect was observed against P. chrysogenum (inhibition zone 13.67 mm) by the quantity of 10 ?l. The most powerful antifungal activity of caraway was observed against E. herbariorum as growth was completely inhibited by the quantity of 10 ?l. The weakest inhibitory effect was observed against A. niger (inhibition zone 28 mm) by the quantity of 10 ?l.


2007 ◽  
Vol 28 (4) ◽  
pp. 174 ◽  
Author(s):  
David Ellis ◽  
Tania Sorrell ◽  
Sharon Chen

The last two to three decades have seen a major increase in invasive fungal infections (IFIs), a small, but increasing proportion of which are caused by pathogens with partial or complete resistance to antifungal drugs. The increase in IFIs has largely been associated with the increase in immunocompromised and critically ill patients. Opportunistic infections with relatively drug-resistant environmental fungi account for much of the resistance. In addition, amongst the only fungal species to colonise humans, Candida, two species that are resistant (C. krusei) or relatively resistant (C. glabrata) to fluconazole have emerged. In part this is explained by the selection pressure exerted by widespread use of fluconazole. Together with the introduction of new antifungal drugs with selective and/or variable antifungal activity, these changes have stimulated interest in understanding mechanisms and origins of resistance, the identification of resistance in the laboratory and its relationship to clinical outcomes, and in surveillance of clinical isolates and populations at risk of IFIs.


2018 ◽  
Vol 13 (9) ◽  
pp. 1934578X1801300
Author(s):  
Bruna de Falco ◽  
Giuliano Bonanomi ◽  
Virginia Lanzotti

A bioassay guided phytochemical analysis of the bulbs of Allium sativum L. var. Voghiera, typical of Voghiera, Ferrara (Italy), allowed the isolation of six new sulfur compounds with dithiosulfinates and sulfoxides functionalities. Structure elucidation of the isolated compounds was carried out by spectroscopic analyses, including NMR spectroscopy and MS spectrometry. Compounds showed significant antimicrobial activity towards two fungal species, the air-borne pathogen Botrytis cinerea and the beneficial fungus Trichoderma harzianum.


Sign in / Sign up

Export Citation Format

Share Document