scholarly journals Application of the steаm аssisted grаvity drаinаge (SAGD) method in the heavy oil fields

2021 ◽  
Vol 13 (3) ◽  
Author(s):  
Antoniu Gomes ◽  
Da Silva Machcarenhas ◽  
Vladimir Shcherba ◽  
Kirill Vorobyev

Recently, the prospects for the development of the oil industry have been associated with the development of deposits of heavy oils and natural bitumen. It is economically feasible and possible to extract high-viscosity oil (HVO) and natural bitumen (NB) only thanks to the development and application of effective technologies for their development. Unconventional oil production requires an unconventional exclusive approach, one of them is the steam — gravity method of oil production. The creation of SAGD models involves solving problems of heat and mass transfer in wells and a productive reservoir to optimize the production mode. To calculate the parameters of heat transfer, reliable information is required about the complex of thermal properties (thermal conductivity, thermal conductivity, volumetric heat capacity) of rocks of the productive formation, the underlying and overlapping layers of the mountain massif. Currently, when conducting research and constructing geological and technological models for predicting development indicators, the degree of influence of variations in the thermophysical properties of reservoir rocks on the efficiency of the SAGD process is not taken into account. Due to the absence until recent years of the possibility of obtaining reliable representative data on the thermal properties of rocks of a particular deposit, averaged values based on single measurements or on reference data that do not take into account the features of the object being developed and do not contain a detailed geological description of the studied rocks are usually used. In this regard, it was necessary to conduct a study of the influence of real spatial variations of the thermophysical properties of rocks, studied in detail for one of the deposits with the help of a new highly efficient hardware and methodological measuring base, on the development indicators by the SAGD method. In this article, the authors considered the effectiveness of using horizontal wells with cyclic steam exposure at the Yareg field.

1978 ◽  
Vol 100 (2) ◽  
pp. 330-333 ◽  
Author(s):  
R. E. Taylor

Samples of sintered and arc-cast tungsten are available from NBS as thermal conductivity (SRM 730) and electrical resistivity (SRM 799) standards for the temperature range from 4 to 3000K. NBS recommended values for these properties above room temperature are based on results of various researchers during a previous international program which included arc-cast and sintered tungsten. The sintered tungsten used in this program was found to be unsuited for use as a standard material due to inhomogeneity and high temperature instability. The present paper gives results at high temperatures for thermal conductivity, electrical resistivity, specific heat, thermal diffusivity and Wiedemann-Franz-Lorenz ratio for a sample of the NBS sintered tungsten using the Properties Research Laboratory’s multiproperty apparatus. These results are compared to values recommended by the Thermophysical Properties Research Center, NBS, and an international program.


2017 ◽  
pp. 50-53
Author(s):  
S. M. Durkin ◽  
I. N. Menshikova

The results of analysis of effect of thermal properties of rocks to steam stimulation by numerical simulation are considered. Several hydrodynamic models of oil pool of Yarega field with different thermal properties: thermal conductivity and heat capacity of rocks - are created. It concluded that the uncertainty of initial information about thermal properties of rocks can significantly affect on development indicators.


2010 ◽  
Vol 649 ◽  
pp. 487-491 ◽  
Author(s):  
Witold K. Krajewski ◽  
Józef Szczepan Suchy

The presented work is aimed at determining thermal diffusivity, thermal conductivity and heat capacity of insulating sleeves used in Polish metallurgical/foundry practice. On basis of the theory elaborated in [1] the mean values of thermophysical properties for temperatures range of about 150-1000 oC were obtained. The results obtained during the examinations presented in the paper can be helpful when formulating boundary conditions during the computer aided simulation of the processes of heat and mass transfer in the system: casting (ingot) – mould riser (ingot head) – ambient, which uses the investigated insulating sleeves [2, 3]. The method of determining thermal properties can be also used for other foundry materials, e.g. sands or cores.


Author(s):  
Ankur Jain ◽  
Kenneth E. Goodson

The excellent mechanical properties of thin film shape memory alloys like Nickel-Titanium (NiTi) have led to their widespread use in MEMS-based micropumps, microactuators, microgrippers, etc. Shape memory based micropumps and actuators have superior work densities compared to other technologies. Characterization of thermophysical properties of these materials is important for modeling the behavior of NiTi-based microdevices. For example, the frequency response of shape-memory based microactuators depends on the rate of dissipation of thermal energy, which is a strong function of the thermal properties of the thin film. While bulk thermal properties of NiTi have been reported before, there exists very little work on measuring these properties for the thin film form. This paper uses the 3-ω method for measurement of thermal conductivity of NiTi thin films. NiTi is sputtered on a Silicon substrate, followed by patterning of a metal heater line. Front-to-backside alignment and Deep Reactive Ion Etching (DRIE) of the substrate results in a free standing thin film of NiTi. A sinusoidal electric current is passed through the metal heater, and the third harmonic of the voltage is measured using a lock-in amplifier. This is used to determine the temperature oscillation in the metal heater, which provides the thin film thermal conductivity using a recently developed analytical model for 3-ω measurements in a two-dimensional free standing thin film. The measured values are found to be much lower than the known bulk thermal conductivity of NiTi. This highlights the importance of thin film property measurements instead of using bulk properties. Data obtained in this work is likely to be useful for improved modeling of thin film shape memory based microdevices.


DYNA ◽  
2019 ◽  
Vol 86 (208) ◽  
pp. 117-125
Author(s):  
Luis Felipe Zambrano-Mayorga ◽  
Juan Sebastian Ramírez-Navas ◽  
Claudia Isabel Ochoa-Martínez

Thermophysical properties and the quality parameters of vanilla dairy ice cream were evaluated as a function of formulation. The sucrose were substituted for alternative sweeteners, and whey powder was used to adjust the nonfat solid content. A mixture design for four ingredients (sucrose, fructose, stevia, and whey powder) was applied. The ice cream composition was correlated with the thermophysical properties (density, viscosity, heat capacity, thermal diffusivity, and thermal conductivity). The optimal formulation, based on the quality parameters (time until first drop falls, melting time, and overrun), was determined. Additionally, the quality parameters were correlated with the thermal properties. The whey powder had a positive effect on the variables measured, improving the quality parameters. The best formulation was 12.1782 % whey powder and 0.0218 % stevia. No significant sensory instead difference was found between this formulation and a commercial ice cream sample. Sucrose was totally replaced with stevia and whey powder in the final product.


Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3241
Author(s):  
Krzysztof Powała ◽  
Andrzej Obraniak ◽  
Dariusz Heim

The implemented new legal regulations regarding thermal comfort, the energy performance of residential buildings, and proecological requirements require the design of new building materials, the use of which will improve the thermal efficiency of newly built and renovated buildings. Therefore, many companies producing building materials strive to improve the properties of their products by reducing the weight of the materials, increasing their mechanical properties, and improving their insulating properties. Currently, there are solutions in phase-change materials (PCM) production technology, such as microencapsulation, but its application on a large scale is extremely costly. This paper presents a solution to the abovementioned problem through the creation and testing of a composite, i.e., a new mixture of gypsum, paraffin, and polymer, which can be used in the production of plasterboard. The presented solution uses a material (PCM) which improves the thermal properties of the composite by taking advantage of the phase-change phenomenon. The study analyzes the influence of polymer content in the total mass of a composite in relation to its thermal conductivity, volumetric heat capacity, and diffusivity. Based on the results contained in this article, the best solution appears to be a mixture with 0.1% polymer content. It is definitely visible in the tests which use drying, hardening time, and paraffin absorption. It differs slightly from the best result in the thermal conductivity test, while it is comparable in terms of volumetric heat capacity and differs slightly from the best result in the thermal diffusivity test.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 488
Author(s):  
Oumaima Nasry ◽  
Abderrahim Samaouali ◽  
Sara Belarouf ◽  
Abdelkrim Moufakkir ◽  
Hanane Sghiouri El Idrissi ◽  
...  

This study aims to provide a thermophysical characterization of a new economical and green mortar. This material is characterized by partially replacing the cement with recycled soda lime glass. The cement was partially substituted (10, 20, 30, 40, 50 and 60% in weight) by glass powder with a water/cement ratio of 0.4. The glass powder and four of the seven samples were analyzed using a scanning electron microscope (SEM). The thermophysical properties, such as thermal conductivity and volumetric specific heat, were experimentally measured in both dry and wet (water saturated) states. These properties were determined as a function of the glass powder percentage by using a CT-Meter at different temperatures (20 °C, 30 °C, 40 °C and 50 °C) in a temperature-controlled box. The results show that the thermophysical parameters decreased linearly when 60% glass powder was added to cement mortar: 37% for thermal conductivity, 18% for volumetric specific heat and 22% for thermal diffusivity. The density of the mortar also decreased by about 11% in dry state and 5% in wet state. The use of waste glass powder as a cement replacement affects the thermophysical properties of cement mortar due to its porosity as compared with the control mortar. The results indicate that thermal conductivity and volumetric specific heat increases with temperature increase and/or the substitution rate decrease. Therefore, the addition of waste glass powder can significantly affect the thermophysical properties of ordinary cement mortar.


2014 ◽  
Vol 722 ◽  
pp. 25-29 ◽  
Author(s):  
Q.L. Che ◽  
X.K. Chen ◽  
Y.Q. Ji ◽  
Y.W. Li ◽  
L.X. Wang ◽  
...  

The carbide forming is proposed to improve interfacial bonding between diamond particles and copper-matrix for diamond/copper composites. The volume fraction of diamond and minor titanium are optimized. The microstructures, thermal properties, interface reaction production and its effect of minor titanium on the properties of the composites are investigated. The results show that the bonding force and thermal conductivity of the diamond/Cu-Ti alloys composites is much weaker and lower than that of the coated-diamond/Cu. the thermal conductivity of coated-60 vol. % diamond/Cu composites is 618 W/m K which is 80 % of the theoretical prediction value. The high thermal conductivity has been achieved by forming the titanium carbide at diamond/copper interface to gain a good interface.


Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Johannes Konnerth ◽  
David Harper ◽  
Seung-Hwan Lee ◽  
Timothy G. Rials ◽  
Wolfgang Gindl

Abstract Cross sections of wood adhesive bonds were studied by scanning thermal microscopy (SThM) with the aim of scrutinizing the distribution of adhesive in the bond line region. The distribution of thermal conductivity, as well as temperature in the bond line area, was measured on the surface by means of a nanofabricated thermal probe offering high spatial and thermal resolution. Both the thermal conductivity and the surface temperature measurements were found suitable to differentiate between materials in the bond region, i.e., adhesive, cell walls and embedding epoxy. Of the two SThM modes available, the surface temperature mode provided images with superior optical contrast. The results clearly demonstrate that the polyurethane adhesive did not cause changes of thermal properties in wood cell walls with adhesive contact. By contrast, cell walls adjacent to a phenol-resorcinol-formaldehyde adhesive showed distinctly changed thermal properties, which is attributed to the presence of adhesive in the wood cell wall.


Sign in / Sign up

Export Citation Format

Share Document