Carbonyl compounds in wine: factors related to presence and toxic effects
ABSTRACT: The objective of this study was to review technological and toxicological factors related to presence of carbonyl compounds found in wines, including acetaldehyde, formaldehyde, acrolein, ethyl carbamate (EC) and furfural. Acetaldehyde and formaldehyde may be formed through the ethanol and methanol oxidation, respectively. Acrolein may arise as a thermal degradation product of glycerol, amino acids, carbohydrates and triglycerides or by metabolic activity of microorganisms. In addition, acrolein and furfural are formed during wood combustion; therefore, these aldehydes may be present in raw materials due to the environmental contamination. Furfural is also a product of the Maillard reaction formed from sugars and amino acids, while ethyl carbamate occurs through the reaction between urea and ethanol. These compounds may react with SO2 and phenolic compounds to form non-volatile adducts, which positively modulates color stability, astringency and aroma in wine. However, when ingested through wine, electrophilic carbonyl compounds may form adducts with nucleophilic targets, such as DNA, resulting in genotoxicity along the gastrointestinal tract. Furthermore, carbonyl compounds induce the increase of reactive oxygen species and can trigger apoptosis, in addition to hepatocellular adenoma and carcinoma as a consequence of chronic hepatotoxicity. Neurodegenerative diseases may be related to the exposure to carbonyl compounds. Therefore, strategies to reduce the levels of these compounds should be studied in order to get the most out of the beneficial functional properties of wine consumption.