scholarly journals Emergence of multidrug-resistant bacteria isolated from surgical site infection in dogs and cats

2020 ◽  
Vol 72 (4) ◽  
pp. 1213-1220
Author(s):  
C.M.M. Corsini ◽  
V.O. Silva ◽  
O.V. Carvalho ◽  
R.V. Sepúlveda ◽  
F.L. Valente ◽  
...  

ABSTRACT Surgical site infections (SSIs) and antimicrobial resistance among pathogens causing SSI are a growing concern in veterinary hospitals. One major reason, the widespread use of antimicrobials, has led to increased incidence of SSIs. This study identified bacteria and resistance profiles to antimicrobials in the SSI cases diagnosed at the Surgical Clinic of Small Animals in the Veterinary Hospital, Federal University of Viçosa, Brazil. The main genus identified was Staphylococcus, followed by Escherichia, Enterococcus, Bacillus, Shigella, Citrobacter, Proteus, Morganella, Serratia, Enterobacter, Pseudomonas and Klebsiella were also found, but in small number. The results indicated the predominance of Gram-negative bacteria among the collected samples. Most of isolates identified were resistant to more than one of the following antimicrobials: ampicillin, tetracycline, enrofloxacin, amoxicillin/clavulanic acid and cephalotin. Of the 17 Staphylococcus sp. isolates, two (11.8%) were methicillin-resistant Staphylococcus aureus (MRSA) and 11 (64.7%) of them were methicillin-resistant Staphylococcus pseudintermedius (MRSP). There were bacterial genera identified with resistance to all tested antimicrobials in different proportions. This should alert veterinary hospitals to the emergence of multidrug-resistant bacteria and to the requirement for the revision of surgical protocols with regard to antimicrobial prophylaxis and therapy.

Author(s):  
Carine Laurence Yehouenou ◽  
Arsène A. Kpangon ◽  
Dissou Affolabi ◽  
Hector Rodriguez-Villalobos ◽  
Françoise Van Bambeke ◽  
...  

Abstract Background Surgical site infections are related to high morbidity, mortality and healthcare costs. Because the emergence of multidrug-resistant bacteria in hospitals is becoming a worldwide challenge for surgeons who treat healthcare-associated infections, we wished to identify the causative agents involved in these infections and the rate of multidrug-resistant bacteria in six public hospitals in Benin. Methods Using standard microbiological procedures, we processed pus specimens collected from obstetrics and gastrointestinal surgery wards. Mass spectrometry (MALDI-TOF) was used for confirmation. For the antibiotic susceptibility test, we first used the Kirby-Bauer disk diffusion method. The secondary test (by microdilution) used the Beckton Dickinson Phoenix automated system (Becton Dickinson Diagnostic, USA). Results We included 304 patients, whose median length of stay was 9 days. A total of 259 wound swabs (85.2%) had positive aerobic bacterial growth. In obstetrics, S. aureus (28.5%, n = 42) was the most common isolate. In contrast, Gram-negative bacteria (GNB) were predominant in gastrointestinal surgery, the most dominant being E.coli (38.4%, n = 31). Overall, 90.8% (n = 208) of aerobic bacteria were multidrug resistant. Two-thirds of S. aureus (65.3%, n = 32) were methicillin-resistant Staphylococcus aureus (MRSA), three of which carried both MRSA and induced clindamycin resistance (ICR). GNB showed high resistance to ceftazidime, ceftriaxone and cefepime. Extended-spectrum beta-lactamases were presented by 69.4% of E.coli (n = 43/62) and 83.3% of K. pneumoniae (n = 25/30). Overall, twelve Gram-negative bacteria (5.24%) showed resistance to at least one carbapenem. No isolates showed a wild-type susceptible phenotype. Conclusion This study shows the alarming prevalence of multidrug-resistant organisms from surgical site infections in Benin hospitals. To reduce the spread of such bacteria in Benin, periodic surveillance of surgical site infections and strict adherence to good hand-hygiene practice are essential.


2019 ◽  
Vol 35 (1) ◽  
pp. 61-66
Author(s):  
Sunjukta Ahsan ◽  
Rayhan Mahmud ◽  
Kajal Ahsan ◽  
Shamima Begum

Infections due to Gram-negative bacteria are common affairs in cancer patients during aggressive therapy. The present study characterizedmulti-drug resistant bacteria (MDR) isolated from cancer aspirates collected from patients admitted to the National Cancer Hospital in Dhaka, Bangladesh. A total of 210 aspirate samples were collected from cancer patients. Out of 210 samples Acinetobacter spp.led the list of isolates (8.89%, n=45). Of these species, 50% exhibited resistance to Amoxycillin and Nitrofurantoin, each, 25% exhibited resistant to Cefotaxime, Azithromycin, Ciprofloxacin, Clindamycin, and Sulfamethoxazole. A total of 33.33% of the Bordetella spp.which accounted 6.67%of the total isolates exhibited resistance to Cefotaxime. All oftheLegionellapneumophila,comprising 4.4%of the isolated species, wereresistant to Cefotaxime, Azithromycin, and Clindamycin.In contrast, 50% were resistant to Cefotaxime, Azithromycin, and Ceftriaxone. Of the Escherichia coli(4.4%, n=45) isolated,50% exhibited resistance to Cefotaxime, Clindamycin, Ceftriaxone, Amoxycillinand Sulfamethoxazole.The only isolate of Klebsiella sp. was demonstrated to be an ESBL producer. The isolation of multidrug resistant bacteria from cancer patients is of particular concern in Bangladesh where cancer and drug resistance are both common phenomena but treatment facilities are poor. To our knowledge this is the first report of the isolation of drug resistant bacteria from cancer patients from Dhaka city. Bangladesh J Microbiol, Volume 35 Number 1 June 2018, pp 61-66


2016 ◽  
Vol 82 (12) ◽  
pp. 3605-3610 ◽  
Author(s):  
Andreas F. Wendel ◽  
Sofija Ressina ◽  
Susanne Kolbe-Busch ◽  
Klaus Pfeffer ◽  
Colin R. MacKenzie

ABSTRACTReports of outbreaks concerning carbapenemase-producing Gram-negative bacteria in which the main source of transmission is the hospital environment are increasing. This study describes the results of environmental sampling in a protracted polyspecies metallo-beta-lactamase GIM-1 outbreak driven by plasmids and bacterial clones ofEnterobacter cloacaeandPseudomonas aeruginosain a tertiary care center. Environmental sampling targeting wet locations (especially sinks) was carried out on a surgical intensive care unit and on a medical ward on several occasions in 2012 and 2013. We were able to demonstrate 43blaGIM-1-carrying bacteria (mainly nonfermenters but alsoEnterobacteriaceae) that were either related or unrelated to clinical strains in 30 sinks and one hair washbasin. GIM-1 was found in 12 different species, some of which are described here as carriers of GIM-1. Forty out of 43 bacteria displayed resistance to carbapenems and, in addition, to various non-beta-lactam antibiotics. Colistin resistance was observed in twoE. cloacaeisolates with MICs above 256 mg/liter. TheblaGIM-1gene was harbored in 12 different class 1 integrons, some without the typical 3′ end. TheblaGIM-1gene was localized on plasmids in five isolates.In vitroplasmid transfer by conjugation was successful in one isolate. The environment, with putatively multispecies biofilms, seems to be an important biological niche for multidrug-resistant bacteria and resistance genes. Biofilms may serve as a “melting pot” for horizontal gene transfer, for dissemination into new species, and as a reservoir to propagate future hospital outbreaks.IMPORTANCEIn Gram-negative bacteria, resistance to the clinically relevant broad-spectrum carbapenem antibiotics is a major public health concern. Major reservoirs for these resistant organisms are not only the gastrointestinal tracts of animals and humans but also the (hospital) environment. Due to the difficulty in eradicating biofilm formation in the latter, a sustained dissemination of multidrug-resistant bacteria from the environment can occur. In addition, horizontal transfer of resistance genes on mobile genetic elements within biofilms adds to the total “resistance gene pool” in the environment. To gain insight into the transmission pathways of a rare and locally restricted carbapenemases resistance gene (blaGIM-1), we analyzed the genetic background of theblaGIM-1gene in environmental bacteria during a long-term polyspecies outbreak in a German hospital.


2017 ◽  
Vol 66 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Fevronia Kolonitsiou ◽  
Matthaios Papadimitriou-Olivgeris ◽  
Anastasia Spiliopoulou ◽  
Vasiliki Stamouli ◽  
Vasileios Papakostas ◽  
...  

The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections’ (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011–13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; blaKPC/blaVIM/blaNDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried blaKPC, four blaKPC and blaVIM and one blaVIM. A significant increase in monthly BSIs’ incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P < 0.001), summer (P < 0.001), and autumn (P < 0.001), as compared to winter months, while Gram-negative bacteria (P < 0.001) and fungi (P < 0.001) were more frequent in summer months. BSIs due to methicillin resistant S. aureus and carbapenem-resistant Gram-negative bacteria increased during the study period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative’s BSI.


2020 ◽  
Author(s):  
Carine Laurence YEHOUENOU ◽  
Arsène A. KPANGON ◽  
Dissou AFFOLABI ◽  
Hector RODRIGUEZ-VILLALOBOS ◽  
Françoise Van Bambeke ◽  
...  

Abstract Background: Surgical site infections are related to high morbidity, mortality and healthcare costs. As the emergence of multidrug-resistant bacterial pathogens in hospitals is becoming a worldwide challenge for surgeons who treat healthcare-associated infections, we wished to identify the causative agents involved in surgical site infections and their susceptibility pattern in six public hospitals in Benin. Methods: Using standard microbiological procedures, we processed pus specimens collected from obstetrics and gastrointestinal surgery wards. Mass spectrometry (MALDI-TOF) was used for confirmation. The antibiotic susceptibility test firstly used the Kirby-Bauer disc diffusion method. The secondary test by microdilution used the Beckton Dickinson Phoenix automated system (Becton Dickinson Diagnostic, USA). Results: We included 304 patients (mean age 32 ± 11 years), whose median length of stay was 9 days. A total of 259 wound swabs (85.2%) had positive aerobic bacterial growth. In obstetrics S. aureus (28.5%, n=42) was the most common isolate. In contrast, Gram-negative bacteria (GNB) were predominant in gastrointestinal surgery. The most dominant being E.coli (38.4%, n=31). Overall, 90.8% (n=208) of aerobic bacteria were multidrug resistant. Two-third of S. aureus (65.3%, n= 32) were methicillin-resistant Staphylococcus aureus (MRSA), three of which carried both MRSA and induced clindamycin resistance (ICR). GNB showed high resistance to ceftazidime, ceftriaxone and cefepime. Extended-spectrum beta-lactamases were presented by 69.4% of E.coli (n=43/62) and 83.3% of K. pneumoniae (n=25/30). Overall, twelve Gram negative bacteria (5.24%) isolates showed resistance to at least one carbapenem. No isolates showed a wild-type susceptible phenotype.Conclusion: This study shows the alarming prevalence of multidrug resistant organisms from surgical site infections in Benin hospitals. To reduce the spread of these multidrug-resistant bacteria, periodic surveillance of surgical site infections and strict adherence to good hand-hygiene practice are essential.


Author(s):  
Evelien Oostdijk ◽  
Marc Bonten

Many infections are caused by enteric bacilli, presumably from endogenous origin. Selective decontamination of the digestive tract (SDD) was developed to selectively eliminate the aerobic Gram-negative bacilli from the digestive tract, leaving the anaerobic flora unaffected. As an alternative to SDD, investigators have evaluated the effects of selective oropharyngeal decontamination (SOpD) alone. Most detailed data on the effects of SDD and SOpD in ICU-patients come from two studies performed in Dutch ICUs. The Dutch studies provide strong evidence that SDD and SOpD reduce ICUmortality, ICU-acquired bacteraemia with Gram-negative bacteria, and systemic antibiotic use. Although successful application has been reported from several solitary ICUs across Europe, it is currently unknown to what extent these effects can be achieved in settings with different bacterial ecology. More studies are needed on the use of SDD or SOpD as a measure to control outbreaks with multidrug resistant bacteria.


2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


2019 ◽  
Vol 61 (1) ◽  
Author(s):  
Edgarthe Priscilla Ngaiganam ◽  
Isabelle Pagnier ◽  
Wafaa Chaalal ◽  
Thongpan Leangapichart ◽  
Selma Chabou ◽  
...  

Abstract Background We investigate here the presence of multidrug-resistant bacteria isolated from stool samples of yellow-legged gulls and chickens (n = 136) in urban parks and beaches of Marseille, France. Bacterial isolation was performed on selective media, including MacConkey agar with ceftriaxone and LBJMR medium. Antibiotic resistance genes, including extended-spectrum β-lactamases (ESBL) (i.e. blaCTX-M, blaTEM and blaSHV), carbapenemases (blaKPC, blaVIM, blaNDM, blaOXA-23, blaOXA-24, blaOXA-48 and blaOXA-58) and colistin resistance genes (mcr-1 to mcr-5) were screened by real-time PCR and standard PCR and sequenced when found. Results Of the 136 stools samples collected, seven ESBL-producing Gram-negative bacteria (BGN) and 12 colistin-resistant Enterobacteriaceae were isolated. Among them, five ESBL-producing Escherichia coli and eight colistin-resistant Hafnia alvei strains were identified. Four blaTEM-1 genes were detected in yellow-legged gulls and chickens. Three CTX-M-15 genes were detected in yellow-legged gulls and pigeons, and one CTX-M-1 in a yellow-legged gull. No mcr-1 to mcr-5 gene were detected in colistin-resistant isolates. Genotyping of E. coli strains revealed four different sequence types already described in humans and animals and one new sequence type. Conclusions Urban birds, which are believed to have no contact with antibiotics appear as potential source of ESBL genes. Our findings highlight the important role of urban birds in the proliferation of multidrug-resistant bacteria and also the possible zoonotic transmission of such bacteria from wild birds to humans.


2021 ◽  
Vol 22 (23) ◽  
pp. 12719
Author(s):  
Kazuo Takayama ◽  
Alberto Tuñón-Molina ◽  
Alba Cano-Vicent ◽  
Yukiko Muramoto ◽  
Takeshi Noda ◽  
...  

The Coronavirus Disease (COVID-19) pandemic is demanding the rapid action of the authorities and scientific community in order to find new antimicrobial solutions that could inactivate the pathogen SARS-CoV-2 that causes this disease. Gram-positive bacteria contribute to severe pneumonia associated with COVID-19, and their resistance to antibiotics is exponentially increasing. In this regard, non-woven fabrics are currently used for the fabrication of infection prevention clothing such as face masks, caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons and shoe covers as protective tools against viral and bacterial infections. However, these non-woven fabrics are made of materials that do not exhibit intrinsic antimicrobial activity. Thus, we have here developed non-woven fabrics with antimicrobial coatings of cranberry extracts capable of inactivating enveloped viruses such as SARS-CoV-2 and the bacteriophage phi 6 (about 99% of viral inactivation in 1 min of viral contact), and two multidrug-resistant bacteria: the methicillin-resistant Staphylococcus aureus and the methicillin-resistant Staphylococcus epidermidis. The morphology, thermal and mechanical properties of the produced filters were characterized by optical and electron microscopy, differential scanning calorimetry, thermogravimetry and dynamic mechanical thermal analysis. The non-toxicity of these advanced technologies was ensured using a Caenorhabditis elegans in vivo model. These results open up a new prevention path using natural and biodegradable compounds for the fabrication of infection prevention clothing in the current COVID-19 pandemic and microbial resistant era.


2019 ◽  
Vol 55 (18) ◽  
pp. 2656-2659 ◽  
Author(s):  
Jia-fu Lin ◽  
Juan Li ◽  
Ashna Gopal ◽  
Tasnim Munshi ◽  
Yi-wen Chu ◽  
...  

Nano photodynamic therapy to overcome multidrug resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document