scholarly journals Expression of cell cycle inhibitors in canine prostate with proliferative inflammatory atrophy and carcinoma

2018 ◽  
Vol 70 (1) ◽  
pp. 82-92
Author(s):  
M.B.R. Faleiro ◽  
L.C. Cintra ◽  
R.S.A. Jesuino ◽  
A.D. Damasceno ◽  
V.M.B.D. Moura

ABSTRACT Gene expression of CDKN1A, CDKN1B, and TP53, and immunostaining of p21, p27 and p53 were evaluated to verify the role of these cell cycle inhibitors in canine prostates with proliferative inflammatory atrophy-PIA and prostatic carcinoma-PC. Seventy samples, 15 normal, 30PIA and 25PC. Regarding number of p27 and p53 labeled cells, difference between normal and PIA and PC was observed, as well as between PIA and PC for p53. Immunostaining intensities of p21, p27 and p53 were different when comparing normal tissues to PIA and PC. Sixteen cDNA of canine prostatic FFPE tissue were subjected to RT-PCR and RT-qPCR, four normal, three PIA, and nine PC. CDKN1A mRNA was detected in four PC by RT-PCR, and it was overexpressed when compared to normal by RT-qPCR, in one PIA and six PC. CDKN1B mRNA was detected in three PC by RT-PCR and it was overexpressed in three PC and decreased in one PC. TP53 mRNA was overexpressed in one PIA and three PC. In conclusion, when overexpressed in canine prostate with premalignant and malignant, p21 and p27 play a role controlling cell proliferation, working as a protective factor in the evolution of PIA to PC, and in the PC development, even in the presence of altered p53.

2019 ◽  
Vol 105 (3) ◽  
pp. 839-853
Author(s):  
Aglaia Kyrilli ◽  
David Gacquer ◽  
Vincent Detours ◽  
Anne Lefort ◽  
Frédéric Libert ◽  
...  

Abstract Background The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. Methods Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (β radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. Results Overall, the thyrocyte responses following exposure to β or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. β and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to β/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. Conclusions TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoshan Su ◽  
Junjie Chen ◽  
Xiaoping Lin ◽  
Xiaoyang Chen ◽  
Zhixing Zhu ◽  
...  

Abstract Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is an essential pathophysiological process in COPD and plays an important role in airway remodeling, fibrosis, and malignant transformation of COPD. Previous studies have indicated FERMT3 is downregulated and plays a tumor-suppressive role in lung cancer. However, the role of FERMT3 in COPD, including EMT, has not yet been investigated. Methods The present study aimed to explore the potential role of FERMT3 in COPD and its underlying molecular mechanisms. Three GEO datasets were utilized to analyse FERMT3 gene expression profiles in COPD. We then established EMT animal models and cell models through cigarette smoke (CS) or cigarette smoke extract (CSE) exposure to detect the expression of FERMT3 and EMT markers. RT-PCR, western blot, immunohistochemical, cell migration, and cell cycle were employed to investigate the potential regulatory effect of FERMT3 in CSE-induced EMT. Results Based on Gene Expression Omnibus (GEO) data set analysis, FERMT3 expression in bronchoalveolar lavage fluid was lower in COPD smokers than in non-smokers or smokers. Moreover, FERMT3 expression was significantly down-regulated in lung tissues of COPD GOLD 4 patients compared with the control group. Cigarette smoke exposure reduced the FERMT3 expression and induces EMT both in vivo and in vitro. The results showed that overexpression of FERMT3 could inhibit EMT induced by CSE in A549 cells. Furthermore, the CSE-induced cell migration and cell cycle progression were reversed by FERMT3 overexpression. Mechanistically, our study showed that overexpression of FERMT3 inhibited CSE-induced EMT through the Wnt/β-catenin signaling. Conclusions In summary, these data suggest FERMT3 regulates cigarette smoke-induced epithelial–mesenchymal transition through Wnt/β-catenin signaling. These findings indicated that FERMT3 was correlated with the development of COPD and may serve as a potential target for both COPD and lung cancer.


2017 ◽  
Vol 47 (12) ◽  
Author(s):  
Mariana Batista Rodrigues Faleiro ◽  
Lorena Cardoso Cintra ◽  
Rosália Santos Amorim Jesuino ◽  
Eugênio Gonçalves de Araújo ◽  
Rafael Malagoli Rocha ◽  
...  

ABSTRACT: Gene expression of ErbB1 and ErbB2, and immunostaining of EGFR (Her1) and Her2 (c-erbB-2) were evaluated in this study to ascertain whether these receptors are involved in the evolution of canine premalignant and malignant prostatic lesions, as proliferative inflammatory atrophy (PIA) and prostatic carcinoma (PC). With regards to the intensity of EGFR immunostaining, there was no difference between normal prostatic tissue and tissues with PIA or PC. In relation to Her2 immunostaining, there were differences between normal prostatic tissue and those with PIA and PC, as also differences between prostates with PIA and PC. There was no correlation between EGFR and Her2 immunostaining. ErbB1 gene product was detected in two normal tissue samples, in one with PIA, and in all samples with PC. ErbB2 mRNA was recorded in two canine samples with PIA, in all with PC, but was not detected in normal prostatic tissue. It was concluded that EGFR and Her2 play roles in canine PIA and PC, suggesting that those receptors may be involved in canine prostatic carcinogenesis.


2016 ◽  
Vol 15 (4) ◽  
pp. 245-251 ◽  
Author(s):  
Mayur Brahmania ◽  
Harry L. A. Janssen

2005 ◽  
Vol 17 (9) ◽  
pp. 104
Author(s):  
K. S. Cashman ◽  
D. A. Froiland ◽  
J. G. Thompson ◽  
M. Lane

Cryopreservation procedures for oocytes result in a significant reduction in viability. Although cryopreservation procedures cause dehydration and therefore osmotic stress, the role of osmolytes in solutions has not been considered and they have therefore not been included for routine use. The aim of this study was to assess the effects of the addition of the osmolyte glycine to vitrification solutions on the health and developmental competence of mouse oocytes. Oocytes were collected from F1 female mice and cryopreserved using cryoloop vitrification with or without glycine, with fresh oocytes examined as controls (n = 2086). Mitochondrial distribution and membrane potential as well as the morphology of the spindles and chromosomes were assessed. Oocytes were fertilised to assess their ability to develop into blastocysts, which were then assessed for their expression of Glut1, Glut3 and IGF2 by real-time RT-PCR. Statistical analysis was performed using a generalised linear model followed by multiple comparisons using an LSD test. Vitrification without glycine perturbed mitochondrial distribution (mean pixel intensity of outer region:inner region, 1.58±0.20, P<0.01) and mitochondrial membrane potential (mean pixel intensity 0.56±0.01, P<0.01) compared to control oocytes (2.34±0.24 and 0.52±0.01, respectively). The addition of glycine prevented these changes (1.97±0.16 and 0.53±0.01, respectively). Vitrification without glycine resulted in 52% of spindles and chromosomes appearing normal while this was increased to 69% with the addition of glycine, however in both treatments these abnormalities appeared to recover after culture for 2 h. Vitrification did not affect fertilisation and blastocyst development however expression of Glut3 was decreased 2.9 fold in blastocysts resulting from oocytes vitrified in the absence of glycine (P<0.01). The data presented suggests that the addition of glycine results in fewer perturbations in oocyte physiology and gene expression of the subsequent blastocysts and should therefore be considered for routine inclusion in solutions for the cryopreservation of oocytes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jonathan P. Rennhack ◽  
Eran R. Andrechek

Abstract The E2F family, classically known for a central role in cell cycle, has a number of emerging roles in cancer including angiogenesis, metabolic reprogramming, metastasis and DNA repair. E2F1 specifically has been shown to be a critical mediator of DNA repair; however, little is known about DNA repair and other E2F family members. Here we present an integrative bioinformatic and high throughput drug screening study to define the role of E2F2 in maintaining genomic integrity in breast cancer. We utilized in vitro E2F2 ChIP-chip and over expression data to identify transcriptional targets of E2F2. This data was integrated with gene expression from E2F2 knockout tumors in an MMTV-Neu background. Finally, this data was compared to human datasets to identify conserved roles of E2F2 in human breast cancer through the TCGA breast cancer, Cancer Cell Line Encyclopedia, and CancerRx datasets. Through these methods we predict that E2F2 transcriptionally regulates mediators of DNA repair. Our gene expression data supports this hypothesis and low E2F2 activity is associated with a highly unstable tumor. In human breast cancer E2F2, status was also correlated with a patient’s response to PARP inhibition therapy. Taken together this manuscript defines a novel role of E2F2 in cancer progression beyond cell cycle and could impact patient treatment.


2019 ◽  
Vol 400 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Peng Sun ◽  
Dan Zhang ◽  
Haiping Huang ◽  
Yafeng Yu ◽  
Zhendong Yang ◽  
...  

Abstract This study aimed to investigate the role of miRNA-1225-5p (miR-1225) in laryngeal carcinoma (LC). We found that the expression of miR-1225 was suppressed in human LC samples, while CDC14B (cell division cycle 14B) expression was reinforced in comparison with surrounding normal tissues. We also demonstrated that enhanced expression of miR-1225 impaired the proliferation and survival of LC cells, and resulted in G1/S cell cycle arrest. In contrast, reduced expression of miR-1225 promoted cell survival. Moreover, miR-1225 resulted in G1/S cell cycle arrest and enhanced cell death. Further, miR-1225 targets CDC14B 3′-UTR and recovery of CDC14B expression counteracted the suppressive influence of miR-1225 on LC cells. Thus, these findings offer insight into the biological and molecular mechanisms behind the development of LC.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 966-966
Author(s):  
Stefan Nagel ◽  
Christof Burek ◽  
Hilmar Quentmeier ◽  
Corinna Meyer ◽  
Andreas Rosenwald ◽  
...  

Abstract Homeobox genes code for transcription factors with essential regulatory impact on cellular processes during embryogenesis and in the adult. Increasingly, members of the circa 200 gene strong family are emerging as major oncogenic players, prompting our investigation into possible homeobox gene dysregulation in Hodgkin lymphoma (HL) in which no recurrent oncogene involvement has been known. Accordingly, we screened 6 well characterized HL cell lines (HDLM-2, KM-H2, L-1236, L-428, L-540, SUP-HD1) and 3 non-Hodgkin lymphoma (NHL) cell lines (RC-K8, RI-1, SC-1) for homeobox gene expression using Affymetrix U133-2.0 whole-genome oligonucleotide microarrays. Of 15 candidate genes thus shown to reveal HL-specific expression patterns, 5 homeobox genes were shortlisted as potentially key dysregulatory targets in HL after additional RT-PCR expression analysis relative to controls. While 3/5 homeobox genes were upregulated in HL (HOXB9, HOXC8, HLXB9), 2/5 were downregulated (BOB1, PAX5). Furthermore, cloning and sequencing RT-PCR products obtained with degenerate primers recognizing conserved homeobox motifs confirmed the predominant expression of HOXB9 in HL cells. However, fluorescence in situ hybridization (FISH) analysis of the HOXB locus (at 17q21) revealed no cytogenetic aberrations, indicating that its activation is conducted non-chromosomally in HL cells. Surprisingly, known target genes of HOXB9 and HOXC8 remained unperturbed, implying novel downstream effector pathways in HL cells. Antisense oligos directed against HOXB9 and forced expression experiments using cloned full length HOXB9 cDNA indicated its involvement in both proliferation and apoptosis. Cell cycle regulators BTG1, BTG2 and GEMININ have been described to interact with HOXB9 and may represent potential targets deserving investigation. We recently showed that HLXB9 promotes IL6 expression in HL cells in response to a constitutively active PI3K signalling pathway therein (Nagel et al., Leukemia19, 841–6, 2005). Our most recent data indicate that HLXB9 is also expressed in various NHL cell lines including anaplastic, diffuse and mediastinal large cell as well as follicular B-cell lymphomas while expression is notably absent from Burkitt, mantle cell and natural killer T-cell lymphomas reflecting their pathologic classification. Intriguingly, our data highlight unexpected similarities between HL and prostate cancer cells which together uniquely overexpress HOXB9, HOXC8 and HLXB9 (or its close homolog GBX2). Additional genes expressed in prostate carcinoma (HOXB13, PRAC1, PRAC2) were detected in two HL cell lines (KM-H2 and L-428) suggesting further parallels may be revealed. Detection of downregulated B-cell differentiation factors BOB1 and PAX5 in our panel of HL cell lines validated this approach. Both factors were previously implicated in oncogenesis of HL lacking IGH rearrangements and other key B-cell characteristics. In summary, we identified a unique homeobox gene expression pattern involving HOXB9, HOXB13, HOXC8 and HLXB9 in HL cell lines resembling that of prostate carcinoma cells. Overexpressed HOXB9 contributes to proliferation and protects against apoptosis in HL cells potentially via interacting with cell cycle regulators BTG1/2 and/or GEMININ.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3526-3526
Author(s):  
Xavier Leleu ◽  
Lian Xu ◽  
Zachary R. Hunter ◽  
Sophia Adamia ◽  
Evdoxia Hatjiharissi ◽  
...  

Abstract Background. Several TNF family members (CD40L and BAFF/BLYS) have been implicated in Waldenstrom’s Macroglobulinemia (WM) cell growth and survival. More recently, abnormalities in the APRIL-TACI pathway have been demonstrated by us in WM cells (Hunter, ASH2006, #228). TRAFs (TNFR-associated factor) are a family of adaptor proteins that mediate signal transduction from multiple members of the TNF receptor superfamily. In particular, TRAFs facilitate pro-apoptotic signaling from the TACI receptor, and TRAF2 is of importance among the TRAF adapter proteins since this protein is required for TNF-alpha-mediated activation of SAPK/JNK MAPK known to be involved in drug-induced death of tumor B cells. We therefore examined the role of TRAF2 in WM growth and survival. Method. We investigated TRAF2, 3 and 5 gene expression in WM patient bone marrow (BM) CD19+ cells and cell lines (BCWM.1, WSU-WM) and compared their expression to BM CD19+ cells from healthy donors. Expression of human TRAF transcripts were determined using real time quantitative RT-PCR (qPCR) based on TaqMan fluorescence methodology. To evaluate the role of TRAF2, a knockdown model was prepared in BL2126 B-cells and BCWM.1 WM cells using electroporation, with resulted ≥50% knockdown efficiency using RT-PCR and immunoblotting. Results. We found that TRAF3 and 5 gene expression was higher in WM versus healthy donors, while TRAF2 expression was lower in 8/13 (60%) patients, using qPCR. TRAFs gene expression did not correlate with tumor burden or WM prognostic markers. We next sought to understand the biological sequelae of TRAF2 deficiency in BL2126 and BCWM.1 cells and found that TRAF2 knockdown induced increased survival at 72 hours in both cell lines. We next studied sequence analysis of 20 WM patients CD19+ BM cells to determine whether there was a TRAF2 genomic alteration, and found heterozygous early termination mutation in exon 5 in 1 (5%) patient. Conclusion. Our data demonstrate that TRAF2 is a commonly dysregulated TNF family adapter protein in patients with WM, with important consequences in WM cell growth and survival.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 683-683
Author(s):  
Christopher Y. Park ◽  
Yoon-Chi Han ◽  
Govind Bhagat ◽  
Jian-Bing Fan ◽  
Irving L Weissman ◽  
...  

Abstract microRNAs (miRNAs) are short, non-protein encoding RNAs that bind to the 3′UTR’s of target mRNAs and negatively regulate gene expression by facilitating mRNA degradation or translational inhibition. Aberrant miRNA expression is well-documented in both solid and hematopoietic malignancies, and a number of recent miRNA profiling studies have identified miRNAs associated with specific human acute myeloid leukemia (AML) cytogenetic groups as well as miRNAs that may prognosticate clinical outcomes in AML patients. Unfortunately, these studies do not directly address the functional role of miRNAs in AML. In fact, there is no direct functional evidence that miRNAs are required for AML development or maintenance. Herein, we report on our recent efforts to elucidate the role of miRNAs in AML stem cells. miRNA expression profiling of AML stem cells and their normal counterparts, hematopoietic stem cells (HSC) and committed progenitors, reveals that miR-29a is highly expressed in human hematopoietic stem cells (HSC) and human AML relative to normal committed progenitors. Ectopic expression of miR-29a in mouse HSC/progenitors is sufficient to induce a myeloproliferative disorder (MPD) that progresses to AML. During the MPD phase of the disease, miR-29a alters the composition of committed myeloid progenitors, significantly expedites cell cycle progression, and promotes proliferation of hematopoietic progenitors at the level of the multipotent progenitor (MPP). These changes are manifested pathologically by marked granulocytic and megakaryocytic hyperplasia with hepatosplenomegaly. Mice with miR-29a-induced MPD uniformly progress to an AML that contains a leukemia stem cell (LSC) population that can serially transplant disease with as few as 20 purified LSC. Gene expression analysis reveals multiple tumor suppressors and cell cycle regulators downregulated in miR-29a expressing cells compared to wild type. We have demonstrated that one of these genes, Hbp1, is a bona fide miR-29a target, but knockdown of Hbp1 in vivo does not recapitulate the miR-29a phenotype. These data indicate that additional genes are required for miR-29a’s leukemogenic activity. In summary, our data demonstrate that miR-29a regulates early events in normal hematopoiesis and promotes myeloid differentiation and expansion. Moreover, they establish that misexpression of a single miRNA is sufficient to drive leukemogenesis, suggesting that therapeutic targeting of miRNAs may be an effective means of treating myeloid leukemias.


Sign in / Sign up

Export Citation Format

Share Document