scholarly journals Response of early soybean cultivars to nitrogen fertilization associated with Bradyrhizobium japonicum inoculation

2018 ◽  
Vol 48 (4) ◽  
pp. 436-446 ◽  
Author(s):  
Alan Mario Zuffo ◽  
Fábio Steiner ◽  
Aécio Busch ◽  
Tiago Zoz

ABSTRACT In early soybean cultivars of high productive potential, the use of chemical nitrogen (N) fertilizer may be a critical factor to meet the crop N requirements for obtaining high yields. In order to determine the response of early soybean cultivars to doses and times of nitrogen fertilizer application, associated with the inoculation of Bradyrhizobium japonicum, two field experiments were conducted in a Quartzipsamment soil from the Brazilian tropical Savannah, during the 2016/2017 and 2017/2018 growing seasons. The experimental treatments were arranged in a 2 × 3 × 4 factorial scheme, being two soybean cultivars (BRS 1074 IPRO and ST 797 IPRO), three application times of N fertilizer (sowing, 30 and 50 days after the emergence) and four N doses (0 kg ha-1, 20 kg ha-1, 40 kg ha-1 and 60 kg ha-1). The following variables were evaluated: plant height, shoot dry matter, number of nodules, nodule dry matter, first pod height, number of pods, number of grains per pod, 1,000-grain mass, grain yield and harvest index. The use of N fertilizer did not improve the production components and did not increase the soybean grain yield, regardless of the doses and times of application. Therefore, it was concluded that, if efficient strains of B. japonicum are used in areas of first soybean crop, in a Quartzipsamment soil with medium-high fertility, especially with a relatively high N availability due to the mineralization of the soil organic matter, there is no need to apply starter or late doses of nitrogen fertilizer.

Author(s):  
Alessandra M. de L. Naoe ◽  
Joênes M. Peluzio ◽  
Leonardo J. M. Campos ◽  
Lucas K. Naoe ◽  
Roberta A. e Silva

ABSTRACT This study aimed to verify the effect of co-inoculation, association between Azospirillum brasilense and Bradyrhizobium japonicum bacteria, on soybean plants subjected to water deficit at two sowing dates. Two field experiments were conducted at the Universidade Federal de Tocantins, campus of Palmas, Brazil, in 2016. The experimental design was randomized blocks in a split-split-plot arrangement with four repetitions, where the plots consisted of two irrigation depths (100 and 25% of crop evapotranspiration - ETc), the subplots was composed of two methods of inoculant application (inoculation with Bradyrhizobium japonicum and co-inoculation with Azospirillum brasilense + Bradyrhizobium japonicum) and the sub-subplots comprised two soybean cultivars (TMG 132 and ANTA 82). The cultivars responded differently to the sowing dates. Co-inoculation did not influence grain yield under full irrigation conditions (100% ETc), in neither cultivar evaluated. However, under the water deficit condition (25% ETc), the grain yield of the cultivar TMG 132 increased 77.20%, indicating that there are different responses of interaction between Azospirillum brasilense, plant genotype and sowing dates.


2004 ◽  
Vol 84 (4) ◽  
pp. 513-523 ◽  
Author(s):  
R. H. McKenzie ◽  
A. B. Middleton ◽  
L. Hall ◽  
J. DeMulder ◽  
E. Bremer

The rate of N fertilizer application is among the most critical decisions for barley (Hordeum vulgare L.) grain production because of its large impact on grain yield, protein content and input cost. A field study was conducted to determine the optimum rate of N fertilizer for a range of barley cultivars in south and central Alberta. Experiments were conducted at 20 sites over 3 yr (1997 to 1999). Nitrogen fertilizer was applied at 0, 40, 80, 120, and 160 kg N ha-1 to 10 cultivars. Grain yields were highest for the two semi-dwarf cultivars (CDC Earl and Kasota) and three of the five general-purpose cultivars (AC Harper, AC Lacombe, Leduc) (high-yielding cultivars) and least for the hulless cultivars (Falcon and Phoenix). Grain yields of the two remaining general-purpose cultivars (CDC Fleet and Seebe) and the malt cultivar (Harrington) were intermediate (medium-yielding cultivars). The economic optimum rate of N fertilizer (NFopt) for high-yielding cultivars was 14 kg N ha-1 higher than for medium-yielding cultivars and 24 kg N ha-1 higher than for hulless cultivars. Maximum grain yields for all cultivars were obtained when the ratio of available N (fertilizer + soil-derived N) to maximum grain yield exceeded ~28 kg N Mg-1. Soil-derived N was highly correlated with both pre-seeding soil NO3-N and growing season precipitation. Protein concentrations were highest for hulless cultivars and least for high-yielding cultivars, and increased linearly with increasing N availability. Barley responses to P, K, S and micronutrients were also tested in this study and showed similar responses to earlier studies. The optimum rate of N fertilizer for barley in this study was obtained when the ratio of available N (fertilizer + soil-derived N) to maximum grain yield was 25 to 30 kg N Mg-1. Key words: Hordeum vulgare, nitrogen fertilizer use efficiency, malting barley, protein


2020 ◽  
Vol 118 (2) ◽  
pp. 115-131
Author(s):  
Letusa Momesso ◽  
Carlos A. C. Crusciol ◽  
Rogério P. Soratto ◽  
Katiuça S. Tanaka ◽  
Claudio H. M. Costa ◽  
...  

Abstract High grain yields of upland rice (Oryza sativa L.) can be achieved in no-tillage systems. However, managing nitrogen (N) fertilization for rice in succession to forage grasses is a challenge because forage residues change N cycling and increase microbial immobilization of N, thereby reducing N availability to the subsequent cash crop. In the present study, two field experiments were conducted to determine if applying all or part of the N fertilizer on preceding palisade grass (Urochloa brizantha) and ruzigrass (Urochloa ruziziensis) or their desiccated residues immediately before rice seeding can supply N to the subsequent rice crop. Forage biomass yield (8–16 Mg ha− 1), N accumulation, and N supply to the subsequent upland rice were highest when all of the N fertilizer was applied on forage grasses at 50, 40 or 35 days before rice seeding (DBS), as opposed to the conventional split application at rice seeding and at tillering. On average, the grain yield of upland rice was 54% higher in succession to palisade grass compared with ruzigrass. The grain yield of rice was higher when N was applied to palisade grass at 35 DBS and ruzigrass at 50 DBS, reaching 5.0 Mg ha− 1 and 3.7 Mg ha− 1, respectively. However, applying N to ruzigrass was less effective for increasing upland rice yields since the yields did not differ from the treatments with the conventional split application. Adjusting the time of N application to forage grasses to increase the grain yields of subsequent upland rice is a sustainable alternative that can promote the economic viability of upland rice production.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 941
Author(s):  
Ewa Szpunar-Krok ◽  
Anna Wondołowska-Grabowska ◽  
Dorota Bobrecka-Jamro ◽  
Marta Jańczak-Pieniążek ◽  
Andrzej Kotecki ◽  
...  

Soybean is a valuable protein and oilseed crop ranked among the most significant of the major crops. Field experiments were carried out in 2016–2019 in South-East Poland. The influence of soybean cultivars (Aldana, Annushka), nitrogen fertilizer (0, 30, 60 kg∙ha−1 N) and inoculation with B. japonicum (control, HiStick® Soy, Nitragina) on the content of fatty acids (FA) in soybean seeds was investigated in a three-factorial experiment. This study confirms the genetic determinants of fatty acid composition in soybean seeds and their differential accumulation levels for C16:0, C16:1, C18:1n9, C18:2, C18:3, and C20:0 as well saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Increasing the rate from 30 to 60 kg ha−1 N did not produce the expected changes, suggesting the use of only a “starter” rate of 30 kg ha−1 N. Inoculation of soybean seeds with a strain of Bradyrhizobium japonicum (HiStick® Soy, BASF, Littlehampton, UK and Nitragina, Institute of Soil Science and Plant Cultivation–State Research Institute, Puławy, Poland) is recommended as it will cause a decrease in SFA and C16:0 acid levels. This is considered nutritionally beneficial as its contribution to total fatty acids determines the hypercholesterolemic index, and it is the third most accumulated fatty acid in soybean seeds. The interaction of cultivars and inoculation formulation on fatty acid content of soybean seeds was demonstrated. An increase in the value of C16:0 content resulted in a decrease in the accumulation of C18:1, C18:2, and C18:3 acids. The content of each decreased by almost one unit for every 1% increase in C16:0 content. The dominant effect of weather conditions on the FA profile and C18:2n6/C18:3n3 ratio was demonstrated. This suggests a need for further evaluation of the genetic progress of soybean cultivars with respect to fatty acid composition and content under varying habitat conditions.


1991 ◽  
Vol 18 (1) ◽  
pp. 53 ◽  
Author(s):  
PC Pheloung ◽  
KHM Siddique

Field experiments were conducted in the eastern wheat belt of Western Australia in a dry year with and without irrigation (1987) and in a wet year (1988), comparing three cultivars of wheat differing in height and yield potential. The aim of the study was to determine the contribution of remobilisable stem dry matter to grain dry matter under different water regimes in old and modern wheats. Stem non-structural carbohydrate was labelled with 14C 1 day after anthesis and the activity and weight of this pool and the grain was measured at 2, 18 and 58 days after anthesis. Gutha and Kulin, modern tall and semi-dwarf cultivars respectively, yielded higher than Gamenya, a tall older cultivar in all conditions, but the percentage reduction in yield under water stress was greater for the modern cultivars (41, 34 and 23%). In the grain of Gamenya, the increase in 14C activity after the initial labelling was highest under water stress. Generally, loss of 14C activity from the non-structural stem dry matter was less than the increase in grain activity under water stress but similar to or greater than grain activity increase under well watered conditions. Averaged over environments and cultivars, non-structural dry matter stored in the stem contributed at least 20% of the grain dry matter.


2004 ◽  
Vol 52 (2) ◽  
pp. 199-203 ◽  
Author(s):  
G. Singh ◽  
R. S. Jolly

Two field experiments were conducted during the kharif (rainy) season of 1999 and 2000 on a loamy sand soil to study the effect of various pre- and post-emergence herbicides on the weed infestation and grain yield of soybean. The presence of weeds in the weedy control plots resulted in 58.8 and 58.1% reduction in the grain yield in the two years compared to two hand weedings (HW) at 30 and 45 days after sowing (DAS), which gave grain yields of 1326 and 2029 kg ha-1. None of the herbicides was significantly superior to the two hand weedings treatment in influencing the grain yield. However, the pre-emergence application of 0.75 kg ha-1 S-metolachlor, and 0.5 kg ha-1 pendimethalin (pre-emergence) + HW 30 DAS were at par or numerically superior to this treatment. There was a good negative correlation between the weed dry matter at harvest and the grain yield of soybean, which showed that effective weed control is necessary for obtaining higher yields of soybean.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ke Xu ◽  
Qiang Chai ◽  
Falong Hu ◽  
Zhilong Fan ◽  
Wen Yin

AbstractIntercropping increases the grain yield to feed the ever-growing population in the world by cultivating two crop species on the same area of land. It has been proven that N-fertilizer postponed topdressing can boost the productivity of cereal/legume intercropping. However, whether the application of this technology to cereal/cereal intercropping can still increase grain yield is unclear. A field experiment was conducted from 2018 to 2020 in the arid region of northwestern China to investigate the accumulation and distribution of dry matter and yield performance of wheat/maize intercropping in response to N-fertilizer postponed topdressing application. There were three N application treatments (referred as N1, N2, N3) for maize and the total amount were all 360 kg N ha−1. N fertilizer were applied at four time, i.e. prior to sowing, at jointing stage, at pre-tasseling stage, and at 15 days post-silking stage, respectively. The N3 treatment was traditionally used for maize production and allocations subjected to these four stages were 2:3:4:1. The N1 and N2 were postponed topdressing treatments which allocations were 2:1:4:3 and 2:2:4:2, respectively. The results showed that the postponed topdressing N fertilizer treatments boosted the maximum average crop growth rate (CGR) of wheat/maize intercropping. The N1 and N2 treatments increased the average maximum CGR by 32.9% and 16.4% during the co-growth period, respectively, and the second average maximum CGR was increased by 29.8% and 12.6% during the maize recovery growth stage, respectively, compared with the N3 treatment. The N1 treatment was superior to other treatments, since it increased the CGR of intercropped wheat by 44.7% during the co-growth period and accelerated the CGR of intercropped maize by 29.8% after the wheat had been harvested. This treatment also increased the biomass and grain yield of intercropping by 8.6% and 33.7%, respectively, compared with the current N management practice. This yield gain was primarily attributable to the higher total translocation of dry matter. The N1 treatment increased the transfer amount of intercropped wheat by 28.4% from leaf and by 51.6% from stem, as well as increased the intercropped maize by 49.0% of leaf, 36.6% of stem, and 103.6% of husk, compared to N3 treatment, respectively. Integrated the N fertilizer postponed topdressing to the wheat/maize intercropping system have a promotion effect on increasing the translocation of dry matter to grain in vegetative organs. Therefore, the harvest index of intercropped wheat and maize with N1 was 5.9% and 5.3% greater than that of N3, respectively. This demonstrated that optimizing the management of N fertilizer can increase the grain yield from wheat/maize intercropping via the promotion of accumulation and translocation of dry matter.


1985 ◽  
Vol 104 (3) ◽  
pp. 583-587
Author(s):  
R. C. Tiwari ◽  
J. Adinarayana

SummaryField experiments were conducted on four barley cultivars (two hulled and two hullless) grown under unirrigated conditions in Varanasi, India, to observe the effect of rate of application of nitrogen on copper concentration and uptake in plants and soils. The copper concentration in both plants and soil decreased with age of crop because of the dilution effect of more vegetative growth. Varieties did not differ in copper concentration of plants but increasing application of nitrogen decreased copper concentration in the plants. Since the hulled varieties yielded more than the hull-less ones, they removed more copper from the soil. Similarly yield was increased linearly by the application of N fertilizer and this led to a linear increase in depletion of available copper.


2019 ◽  
Vol 37 ◽  
Author(s):  
L.B.P. BRAZ ◽  
G.B.P. BRAZ ◽  
S.O. PROCÓPIO ◽  
C.J.B. FERREIRA ◽  
A.G. SILVA ◽  
...  

ABSTRACT: The presence of volunteer corn plants in coexistence with soybean has been increasing since the introduction of glyphosate-resistant corn hybrids. This study aimed to evaluate the effect of interference of volunteer RR® corn plants at different densities on two RR® soybean cultivars. The experiment was conducted in Rio Verde, GO. The experimental design was a randomized block design in a factorial arrangement (2×5), with four replications. Factor A consisted of two soybean cultivars (BMX Potência RR® and M8210 IPRO®), while five densities of RR® corn plants per m2 (0, 4, 8, 12, and 16) were adopted for factor B. The following evaluations were carried out for soybean: plant height, SPAD index, percentage of interrow closure, shoot dry matter, first pod height, number of pods per plant, 100 grain weight, and grain yield of grains. Soybean plant height presented a linear and positive relationship with the increased density of corn plants. Shoot dry matter, 100 grain weight, number of pods per plant, and grain yield were negatively affected by the increased density of volunteer corn infestation. The soybean cultivar M8210 IPRO® was more susceptible to corn plant interference when compared to the cultivar BMX Potência RR®.


2013 ◽  
Vol 59 (No. 10) ◽  
pp. 472-477 ◽  
Author(s):  
B. Roitner-Schobesberger ◽  
Kaul H-P

Amaranth is a promising C4-crop. However, for a wider spread of the crop a better understanding of factors that are influencing yield formation is crucial for optimizing the plant phenotype and enhancing yield. The present study wanted to clarify the effects of assimilate sources and sinks on yield formation by artificially altering source or sink size. Field experiments were conducted in Eastern Austria during three years with three genotypes, applying source-sink manipulation treatments at mid flowering (control, 50% of inflorescence removed, 50% or 100% of leaves removed). At maturity we measured shoot, inflorescence and grain dry matter, thousand kernel mass and number of seeds per plant. An average grain yield level of about 3.5 t/ha dry matter on control plots indicated favorable growth conditions for amaranth in general. The removal of all leaves had a strong detrimental effect on all parameters, but severity of yield reduction due to defoliation differed between genotypes, ranging from –49% to –73%. Contrastingly, 50% flower reduction did not have any significant effects. Also with 50% defoliation no significant yield reduction was observed. We conclude that source strength of amaranth during flowering is more yield limiting than its sink capacity.


Sign in / Sign up

Export Citation Format

Share Document