scholarly journals Concrete beams fire design using graphs

2013 ◽  
Vol 6 (4) ◽  
pp. 513-536
Author(s):  
G. B. M. L. Albuquerque ◽  
V. P. Silva

The most expeditious method for the design of concrete beams under fire situation is the tabular method, presented by the Brazilian standard ABNT NBR 15200:2012. Albeit simple, this method constrains the engineer's work, as it prevents him to seek alternative solutions to the few tabulated values. Yet, the Brazilian standard allows employing more advanced methods. Hence, the purpose of this work was to perform a thermal and structural analysis of beams with several widths, heights, covers and diameters/layouts of steel reinforcement (upper and lower). From those results, graphs were constructed, associating the ratio between the applied bending moment in fire over the resistance bending moment at ambient temperature, for the fire resisting time of each situation. These graphs also allow taking into account the redistribution of moments from positive to negative, which will lead to savings in the solution found.

2013 ◽  
Vol 12 (1) ◽  
pp. 115-122
Author(s):  
Michał Głowacki ◽  
Marian Abramowicz ◽  
Robert Kowalski

This paper describes the analysis of high temperature influence on beams with heated tensile zone. High temperature experiments were preformed under the static load of 50 or 70% of the destructive force ensuring constant value of bending moment in the central part of the heated beam. Beams with 2 reinforcement ratios – 0.44 and 1.13% were examined. In total four series of beams, three in each series (12 elements) were used. This paper analyses the reduction of relative beam cross section stiffness depending on reinforcement temperature. Experimentally obtained stiffness values calculated in two ways (element maximal deflection and deflection measured in three points of analysed element) were compared to calculation results made according to Eurocode. The performed analysis shows that reduction of the stiffness of element based on Eurocode calculations is slightly bigger than the experimentally obtained one.


Author(s):  
Lijie Wang ◽  
Robby Caspeele ◽  
Luc Taerwe

Buckling of concrete columns is a major issue in fire design, since heating of the columns will result in loss of stiffness and strength in the outer concrete layers. In the Dutch concrete code NEN 6720 (NEN, 1995), a quasi-linear theory of elasticity (KLE) method is provided for columns at ambient temperature. However, no literature is available showing whether this method could be adopted for elevated temperatures. Hence, an efficient calculation tool is needed to validate the applicability of this method in case of fire. As a first step, a cross-sectional calculation tool is introduced to calculate interaction curves of columns at ambient temperature. Further, the interaction diagrams obtained with this numerical method as well as the stiffness method provided in (Eurocode, 2004) and the KLE method are compared. Then, an assumed formula in the KLE-method for the nominal stiffness calculation is discussed considering interaction curves of columns in case of an ISO 834 fire. Finally, parameters like the fire duration and the slenderness ratio are investigated.


Fire Research ◽  
2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Dalilah Pires ◽  
Rafael C. Barros ◽  
Ricardo A. M. Silveira ◽  
Ígor J. M. Lemes ◽  
Paulo A. S. Rocha

The objective of this study is to simulate the behavior of reinforced concrete beams in fire situation. In order to achieve this objective, advanced numerical formulations were developed, implemented and evaluated. When exposed to high temperatures, the properties of the material deteriorate, resulting in the loss of strength and stiffness. To achieve the goal, two new modules within the Computational System for Advanced Structural Analysis were created: Fire Analysis and Fire Structural Analysis. The first one aims to determine the temperature field in the cross section of structural elements through thermal analysis by using the Finite Element Method (FEM). The second was designed to perform the second-order inelastic analysis of structures under fire using FEM formulations based on the Refined Plastic Hinge Method coupled with the Strain Compatibility Method. The results obtained of the nonlinear analyses of two reinforced concrete beams under high temperature were compared with the numerical and experimental solutions available in literature and were highly satisfactory. These results also showed that the proposed numerical approach can be used to study the progressive collapse of other reinforced concrete structures in fire situation and extended to the numerical analysis of composite structures under fire condition.


2020 ◽  
Vol 24 (1) ◽  
pp. 11-16
Author(s):  
Saddam - Husein ◽  
Rudy Djamaluddin ◽  
Rita Irmawaty ◽  
Kusnadi Kusnadi

SADDAM HUSEIN. Analisa Pola Kegagalan Balok Beton Menggunakan GFRP Bar Tanpa Selimut Beton (dibimbing oleh Rudi Djamaluddin dan Rita Irmawaty) Struktur beton bertulang yang menggunakan tulangan baja pada daerah korosif, menjadi rawan terhadap kerusakan atau penurunan kekuatannya akibat korosi.Korosi pada tulangan baja merupakan salah satu faktor penyebab menurunnya kekuatan struktur beton bertulang. Salah satu material yang dikembangkan mengatasi korosi adalah penggunaan material tulangan GFRP (Glass Fiber Reinforced Polymer). Penelitian ini bertujuan untuk menganalisa kapasitas lentur dan pola kegagalan balok beton tanpa selimut dengan menggunakan material tulangan GFRP bar.   Desain penelitian merupakan eksperimental laboratorium dengan rekapitulasi sebanyak 6 sampel yang terdiri dari 2 Balok beton menggunakan tulangan baja dengan selimut beton, 2 balok beton menggunakan tulangan GFRP bar dengan selimut beton, 2 balok beton menggunakan GFRP bar tanpa selimut beton. Metode pengujian dilakukan dengan dengan pengujian lentur statik monotonik dan Analisis data menggunakan uji kondisi retak awal dan kondisi ultimit.   Hasil penelitian ini menunjukkan bahwa kapasitas lentur pada balok dengan tulangan GFRP bar lebih besar dibandingkan dengan balok tulangan baja dan mampu meningkatkan kapasitas lentur balok dalam menahan beban sebesar 39.76 %, pola kegagalan beton yang terjadi pada balok tulangan baja mengalami kegagalan lentur tekan ditandai dengan retakan yang terjadi pada sisi tertekan dan membentuk retakan tegak dengan sumbu netral beton yang tertekan, sedangkan pada balok beton tulangan GFRP tanpa selimut mengalami kegagalan keruntuhan tekan geser dengan kondisi tulangan berdeformasi (bi-linear) dengan retak miring dan secara tiba-tiba menjalar menuju sumbu netral beton yang tertekan sehingga terjadilah keruntuhan secara tiba-tiba.     SADDAM HUSEIN.Failure mode analysis of concrete Beams Using GFRP rebar Without concrete cover (supervised by Rudi Djamaluddin and Rita Irmawaty)   Reinforced concrete that uses rebar steel in corrosive areas, are prone to damage or decreased strength due to corrosion. Corrosion in the steel reinforcement is one of the factors that decreasing strength of reinforced concrete. One of the materials developed to overcome corrosion is the use of GFRP (Glass Fiber Reinforced Polymer) reinforcement material. This study aims to analyze the flexural capacity and failure mode of concrete beams without concrete cover using material GFRP bar as reinforcement.   The research design was an experimental laboratory with a recapitulation of 6 samples consisting of 2 beams using steel reinforcement with concrete cover.2 concrete beams using reinforcement GFRP bar with concrete cover, 2 beams using GFRP bars without concrete cover. The  research method uses the monotonic static flexure and analyzing the data using the initial crack condition and ultimate conditions test.   The results of the research indicate the flexural capacity of the beams with GFRP bar reinforcement is higher than steel reinforcement beams and can increase 39.76% of the flexural capacity of the beams in holding loads , the failure mode analysis occurs in steel reinforcing beam experiences compressive failure. Failure was characterized  by cracks that occur on the depressing side and form an upright crack with the neutral axis of the compressed concrete, whereas in GFRP reinforced concrete beams without concrete cover, failure of shear compression with conditions of deformed reinforcement (bi-linear) with sloping cracks and suddenly spread towards the neutral axis of the compressed concrete so that there was a sudden collapse.


2014 ◽  
Vol 5 (4) ◽  
pp. 353-366 ◽  
Author(s):  
Mark Green ◽  
Kevin Hollingshead ◽  
Noureddine Bénichou

This paper considers the fire performance of concrete beams and columns that have been strengthened with fibre reinforced polymers (FRPs). Results from four recent full-scale tests are presented. A newly developed type of insulation was employed and the thickness of the insulation (15 to 20 mm) was approximately half that provided in earlier tests. All of the members survived four hours of the fire exposure. A conceptual model for design to determine when insulation is required is also presented. Further research needed to fully develop the conceptual model to a more practical design tool is outlined.


2011 ◽  
Vol 243-249 ◽  
pp. 929-933
Author(s):  
Na Ha ◽  
Lian Guang Wang ◽  
Shen Yuan Fu

In order to improve the bearing capacity of SRC which is related with deformation and stiffiness, SRC beams should be strengthened by CFRP. Based on the experiment of six pre-splitting steel reinforced concrete beams strengthened with (Prestressed) CFRP sheets, the deformation of beams are discussed. Load-deformation curves are obtained by the experiment. Considering the influence of intial bending moment on SRC beams, the calculated deformation formulas of SRC beams strengthened by (Prestressed) CFRP are deduced. The results showed that the load-deformation curves of normal and strengthened beams respectively showed three and two linear characteristics. The theoretical results which calculated by the formulas of deformation are well agreement with the experimental results.


2018 ◽  
Vol 7 (1) ◽  
pp. 126
Author(s):  
Latha M S ◽  
Revanasiddappa M ◽  
Naveen Kumar B M

An experimental investigation was carried out to study shear carrying capacity and ultimate flexural moment of reinforced cement concrete beam. Two series of simply supported beams were prepared by varying diameter and spacing of shear and flexural reinforcement. Beams of cross section 230 mm X 300 mm and length of 2000 mm. During testing, maximum load, first crack load, deflection of beams were recorded. Test results indicated that decreasing shear spacing and decreasing its diameter resulted in decrease in deflection of beam and increase in bending moment and shear force of beam.


2019 ◽  
Vol 3 (2) ◽  
pp. 135
Author(s):  
Novita Ike Triyuliani ◽  
Sri Murni Dewi ◽  
Lilya Susanti

The innovations strengthening building structures are important topics. Failure in structures such as beams and columns due to time, re-functions of a building, even initial design errors that are weak or lack the safety factor of a building structure. External reinforced concrete beams are one of the beams currently being developed. It is a concrete block with reinforcement of steel reinforcement on the outer (external) of the beam. This study aims to determine the index of increasing beam strength and ductility after retrofitting external steel reinforcement, which has the dimension of beams 15 x 15 x 100 cm, repeating 12 pcs, with external reinforcement each 6 pcs 2Ø6 and 3Ø6. The results from this study are an increasing the index of beam flexural strength after retrofit with external steel reinforcement. Meanwhile, beams after retrofit with 2Ø6 external steel have an average increase index of 1.25 and 1.21 while for external steel 3Ø6 are 1.29 and 1.60 respectively. The ductility depends on the value of ultimate load and maximum deflection that occurs, where the ductility value for the comparison of each specimen experiences a reduction in the average ductility value with 2Ø6 external steel which is 37.74% and 70.95% while with 3Ø6 external steel is 61,65% and 60.62%. Berbagai inovasi upaya peningkatan kekuatan struktur bangunan telah menjadi bahasan yang penting. Kegagalan pada struktur seperti balok dan kolom karena umur, alih fungsi suatu bangunan, bahkan kesalahan desain awal yang lemah atau kurang memenuhi faktor keamanan suatu struktur bangunan. Balok beton bertulangan eksternal adalah salah satu balok yang sedang dikembangkan pada saat ini, yaitu balok beton dengan perkuatan tulangan baja di sisi terluar (eksternal). Penelitian ini bertujuan untuk mengetahui indeks peningkatan kekuatan balok dan daktilitas setelah dilakukan perbaikan menggunakan tulangan baja eksternal, dengan dimensi balok 15 × 15 × 100 cm berulang 12 buah, penambahan tulangan baja eksternal masingmasing 6 buah 2Ø6 dan 3Ø6. Hasil yang didapat dari penelitian ini adalah indeks peningkatan kekuatan lentur balok setelah dilakukan perbaikan menggunakan tulangan baja eksternal. Dimana balok setelah dilakukan perbaikan dengan baja eksternal 2Ø6 memiliki indeks peningkatan rata-rata 1,25 dan 1,21 sedangkan untuk baja eksternal 3Ø6 masing-masing 1,29 dan 1,60. Daktilitas tergantung dari nilai beban ultimit dan lendutan maksimum yang terjadi, dimana nilai daktilitas untuk perbandingan tiap benda uji mengalami reduksi nilai daktilitas rata-rata dengan baja eksternal 2Ø6 yaitu sebesar 37,74% dan 70,95% sedangkan dengan baja eksternal 3Ø6 sebesar 61,65% dan 60,62%.


Sign in / Sign up

Export Citation Format

Share Document