scholarly journals No Evidence of Adverse Effects on Germination, Emergence, and Fruit Yield due to Space Exposure of Tomato Seeds

1996 ◽  
Vol 121 (3) ◽  
pp. 414-418 ◽  
Author(s):  
Brian A. Kahn ◽  
Peter J. Stoffella

Seeds of `Rutgers California Supreme' tomato (Lycopersicon esculentum Mill.) were exposed to outer space conditions aboard the long duration exposure facility (LDEF) satellite in the space exposed experiment developed for students (SEEDS) project of the National Aeronautics and Space Administration (NASA). Seeds aboard the LDEF were packed in dacron bags forming four layers per sealed canister. Some of these seeds were used in Oklahoma and Florida for studies of germination, emergence, and fruit yield. Among all measured variables in three experiments, there was only one significant main effect of canister 2 versus canister 7 (for mean time to germination) and only one main effect of layer (for seedling shoot dry weight). There also were only two inconsistent canister x layer interactions in the germination tests. The contrast of Earth-based control seed versus space-exposed seed was significant four times: in Oklahoma in 1991 the mean time to germination of space-exposed seeds and the days to 50% of final germination were 0.7 days less than for Earth-based seeds, and in Florida in 1992 seedling percent emergence and shoot dry weight were increased by space exposure. Fruit yield and marketability were unaffected in plants grown from space-exposed seeds. These results support student findings from the SEEDS project, and provide evidence that tomato seeds can survive in space for several years without adverse effects on germination, emergence, and fruit yield.

1997 ◽  
Vol 11 (4) ◽  
pp. 672-676 ◽  
Author(s):  
Jose P. Morales-Payan ◽  
Bielinski M. Santos ◽  
William M. Stall ◽  
Thomas A. Bewick

Additive series experiments were conducted under greenhouse conditions to determine the effect of season-long interference of different initial population densities of purple nutsedge on the shoot dry weight and fruit yield of tomato and bell pepper. Purple nutsedge densities up to 200 plants/m2linearly reduced shoot dry weight at flowering and fruit yield of both crops as weed density increased. Both variables were directly correlated, and for each percentage unit of tomato shoot dry weight loss at flowering, fruit yield was reduced 1.24 units, whereas for bell pepper this relationship was 1 to 2.01. Total shoot and tuber biomass of purple nutsedge increased as density increased. The presence of either crop caused a decline in the total shoot dry weight accumulation of purple nutsedge, with tomato producing a higher degree of loss than bell pepper to the weed. Fruit yield losses due to purple nutsedge interference reached 44% for tomato and 32% for bell pepper.


HortScience ◽  
2019 ◽  
Vol 54 (5) ◽  
pp. 880-884 ◽  
Author(s):  
Michele R. Warmund ◽  
Jeanne D. Mihail ◽  
Kaley Hensel

Elderberry rust (Puccinia sambuci Schwein.) Arthur (=P. bolleyana) (Arthur, 1921) disease is frequently found in commercial American elderberry (Sambucus nigra L. subsp. canadensis L.) plantings when an alternate host, Carex sp., is present. To evaluate potential infection periods of P. sambuci on elderberry plants, micrometeorological conditions were monitored. Rust symptoms were observed on elderberry on 5 Apr. 2016, and conditions favorable for possible infection were 9 to 18 °C, ≥3 hours of continuous leaf wetness, and ≥85% relative humidity. Studies were also conducted to ascertain whether P. sambuci with varying pustule numbers affects fruiting, berry puree quality, or vegetative growth. Fruit yield was reduced by 31% when potted ‘Bob Gordon’ elderberry averaged six rust pustules per plant compared with noninfected plants. In another experiment, field-grown ‘Wyldewood’ plants averaging 137 rust pustules/cane at harvest had 47% less fruit weight on canes than uninfected canes. Titratable acidity of fruit puree from plants was lower when plants had either 690 rust pustules/plant or 137/pustules/cane, but soluble solids and pH of puree were unaffected by P. sambuci infection. The effect of rust infection on vegetative growth of elderberry plants also varied with pustule numbers. With a low infection level (six pustules per plant), P. sambuci did not induce premature leaf loss on ‘Bob Gordon’ plants or adversely affect shoot dry weight at the end of the growing season. When P. sambuci infection on ‘Wyldewood’ plants was more severe (137 pustules/cane), greater leaf loss occurred on infected canes than on uninfected canes. At very high infection levels (690 pustules/plant), ‘Bob Gordon’ plant dry weight was reduced. Because of the potential for fruit yield loss on elderberry plants, control of P. sambuci at relatively low infection levels on this plant may be warranted. Strategies that eliminate or suppress the alternate host would likely reduce the P. sambuci inoculum and limit the potential for elderberry plant infection.


2005 ◽  
Vol 19 (3) ◽  
pp. 669-673 ◽  
Author(s):  
Nader Soltani ◽  
Darren E. Robinson ◽  
Allan S. Hamill ◽  
Stephen Bowley ◽  
Peter H. Sikkema

Limited information exists on the tolerance of processing tomato to postemergence (POST) application of thifensulfuron-methyl. The tolerance of 13 processing tomato varieties, ‘CC337’, ‘H9144’, ‘H9314’, ‘H9478’, ‘H9492’, ‘H9553’, ‘H9909’, ‘N1069’, ‘N1082’, ‘N1480E’, ‘N1480L’, ‘N1522’, and ‘PETO696’, to POST applications of thifensulfuron-methyl at the maximum use rate (6 g ai/ha) and twice the maximum use rate (12 g/ha) for soybean was evaluated at two Ontario locations in 2001 and 2002. At 7 days after treatment (DAT), thifensulfuron applied POST caused 0.2 to 1% visible injury to CC337, H9144, N1082, N1522, and PETO696 at the high rate. H9553, H9909, N1069, and N1480E were the most sensitive to POST thifensulfuron-methyl, with visible injury ranging from 1 to 6% at the high rate. There was no visible injury to H9314, H9478, H9492, or N1480L at either application rate of thifensulfuron-methyl. By 28 DAT, no visible injury was noted to any variety, except for H9909, N1069, and N1480L, which showed minimal (<2%) visible injury. There were no adverse effects on shoot dry weight and marketable yield for any variety at either rate. Although thifensulfuron-methyl applied POST caused minimal and transient injury to the varieties tested, more tolerance trials with other fresh and processing tomato varieties are required to confirm these initial results.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 620-622 ◽  
Author(s):  
Nader Soltani ◽  
Peter H. Sikkema ◽  
Darren E. Robinson

There is little information published on the effect of residues from postemergence (POST) applications of foramsulfuron and preemergence (PRE) applications of isoxaflutole, and isoxaflutole plus atrazine in the year after application on vegetable crops. Three trials were established from 2000 to 2002 in Ontario to determine the effects of residues of foramsulfuron, isoxaflutole, and isoxaflutole plus atrazine on cabbage, processing pea, potato, sugar beet, and tomato 1 year after application. Aside from a reduction in sugar beet plant stand, there were no visual injury symptoms in any crop at 7, 14, and 28 days after emergence (DAE) in any of the herbicide carryover treatments. Isoxaflutole residues reduced shoot dry weight and yield as much as 27% and 28% in cabbage, and 57% and 60% in sugar beets, respectively. The addition of atrazine to isoxaflutole caused further reductions in shoot dry weight and yield of cabbage and sugar beet. Isoxaflutole plus atrazine residues reduced shoot dry weight and yield as much as 42% and 43% in cabbage, and 58% and 82% in sugar beets, respectively. There were no adverse effects on shoot dry weight and yield of processing pea, potato, and tomato from isoxaflutole or isoxaflutole plus atrazine residues in the year following application. Foramsulfuron residues at either rate did not reduce shoot dry weight or yield of any crops 1 year after application. Based on these results, it is recommended that cabbage and sugar beet not be grown in the year following the PRE application of isoxaflutole or isoxaflutole plus atrazine.


2006 ◽  
Vol 20 (1) ◽  
pp. 227-231 ◽  
Author(s):  
Adrian D. Berry ◽  
William M. Stall ◽  
B. Rathinasabapathi ◽  
Gregory E. Macdonald ◽  
R. Charudattan

Field studies were conducted to determine the effect of season-long interference of smooth pigweed or livid amaranth on the shoot dry weight and fruit yield of cucumber. Smooth pigweed or livid amaranth densities as low as 1 to 2 weeds per m2caused a 10% yield reduction in cucumber. The biological threshold of smooth pigweed or livid amaranth with cucumber is between 6 to 8 weeds per m2. Consequently, weed interference resulted in a reduction in cucumber fruit yield. Smooth pigweed, livid amaranth, and cucumber plant dry weight decreased as weed density increased. Evaluation of smooth pigweed, livid amaranth, and cucumber mean dry weights in interspecific competition studies indicated that cucumber reduced the dry weight of both species of amaranths.


2013 ◽  
Vol 33 (2) ◽  
pp. 197-203 ◽  
Author(s):  
J. Nurzyński ◽  
Z. Uziak ◽  
E. Mokrzecka

The effects of KCl, K<sub>2</sub>SO<sub>4</sub> and KNO~ on the yields of greenhouse tomatoes variety 'Revermun' cultivated on a peat substrate were examined. On the basis of fruit yield, dry weight content in the fruit and the content of K, Ca, Mg, Cl, S-SO<sub>4</sub> in the soil and of N, P, K, Ca, Mg, Cl, S-SO<sub>4</sub>, Fe, Cu, Mn, Zn, Mo in leaf stalks it was found that KCl is the best form foir fertilizing greenhouse tomatoes cultivated on peat. No adverse effects of chlorine at concentrations of 1500 mg Cl/liter peat and 6,0% Cl in the dry mass of tomato leaves were observed.


1993 ◽  
Vol 118 (5) ◽  
pp. 655-660 ◽  
Author(s):  
M.C. Bolarín ◽  
F. Pérez-Alfocea ◽  
E.A. Cano ◽  
M.T. Estañ ◽  
M. Caro

The effects of increasing salinity on dry weight and ion concentration of shoots at various growth stages and on fruit yield in four tomato (Lycopersicon esculentum Mill.) genotypes were assessed. The salt treatments (35, 70, and 140 mm NaCl) were applied pre-emergence (seed sowing) (pre-E) and post-emergence (four-leaf stage) (post-E) and maintained during plant growth. Genotype salt tolerance, measured as shoot dry weight in response to increases in salt concentration, varied depending on plant growth stage and salt application time. When salt was applied pre-E, salt tolerance increased with plant age, whereas when applied post-E, 45-day-old plants were the most salt tolerant. Mature plants were similarly salt tolerant independent of the growth stage at which the salt treatments began. However, fruit yield of all genotypes was higher when salt was applied pre-E than post-E. Shoot dry weight decreased as shoot Cl and Na ion concentrations increased. During early growth stages, pre-E salt-treated plants had the highest Cl-and Na+ concentrations and the lowest shoot dry weights. However, at the advanced stages, shoot Cl- and Na Concentrations were equal for both salt application times. These results show that the plants must adapt to salinity during a period that allows them to develop a mechanism to regulate internal Cl- and Na+ concentrations and, thus, grow under high salinity.


HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 594e-594
Author(s):  
Charles J. Graham

Research is needed to better understand the influence of cell volume and fertility on watermelon transplant size and field performance in order to determine the most economic production practices. `Jubilee' watermelon transplants were grown using a 4 x 4 factorial experimental design consisting of 4 cell volumes (30.7, 65.5, 147.5, and 349.6 cm3) and 4 fertility rates (0, 1/4, 1/2, and full-strength Hoagland's solution). Transplant shoot dry weight significantly increased as cell volume and fertility increased. Increasing cell volume linearly increased watermelon number/ha and tons/ha for early and total harvest in 1995. The average weight per watermelon significantly increased for early-harvested fruit but not for total harvest as cell volume increased in 1995. Soluble solids concentration linearly increased with increasing cell volume for early and total harvests in 1995. Cell volume had no significant influence on the harvest parameters measured in 1997. In 1995, increasing fertility linearly increased watermelon number/ha and tons/ha for early harvests. Increasing fertility increased the soluble solids concentration linearly for early-harvested watermelons in 1997 but not in 1995. Fertility rate had no significant influence on any of the other harvest parameters measured in 1995 and 1997. The growing conditions and disease pressure in 1997 reduced melons/ha, yield, and soluble solids content when compared to 1995 values. The half-strength Hoagland's solution produced the greatest number of watermelons/ha, tons/ha, and the highest soluble solids concentration in 1995 and 1997. Pretransplant nutritional conditioning had no significant effect on total `Jubilee' watermelon production in Louisiana for 1995 and 1997.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 519d-519 ◽  
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Nicotiana alata Link and Otto. was transformed via Agrobacterium tumefaciens encoding a senescence-specific promoter SAG12 cloned from Arabidopsis thaliana fused to a Agrobacterium tumefaciens gene encoding isopentenyl transferase (IPT) that catalyzes cytokinin synthesis. This was considered an autoregulatory senescence-inhibitor system. In 1996, we reported delayed senescence of intact flowers by 2 to 6 d and delayed leaf senescence of transgenic vs. wild-type N. alata. Further evaluations in 1997 revealed several other interesting effects of the SAG12-IPT gene construct. Measurement of chlorophyll content of mature leaves showed higher levels of both chlorophyll a and b in transgenic material under normal fertilization and truncated fertilization regimes. At 4 to 5 months of age transgenic plants expressed differences in plant height, branching, and dry weight. Plant height was reduced by 3 to 13 cm; branch counts increased 2 to 3 fold; and shoot dry weight increased up to 11 g over wild-type N. alata. These observations indicate the system is not tightly autoregulated and may prove useful to the floriculture industry for producing compact and more floriferous plants.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 135-148
Author(s):  
Mohammed El Midaoui ◽  
Ahmed Talouizte ◽  
Benbella Mohamed ◽  
Serieys Hervé ◽  
Ait Houssa Abdelhadi ◽  
...  

SUMMARYAn experiment has been carried out in order to study the behaviour under mineral deficiency of three sunflower genotypes, a population variety (Oro 9) and two hybrids (Mirasol and Albena). Sunflower seedlings were submitted to five treatments: N deficiency (N0), P deficiency (P0), K deficiency (K0), N and K deficiency (N0K0) and a control. Plants were harvested when they reached 3-4 true pairs of leaves. Growth parameters measured (height, total leaf area, root length, root and shoot dry mater) were all significantly reduced by mineral deficiency. Leaf area was most reduced by N0 (-61%) and P0 (-56%). Total dry matter was most affected by N0 (-63%) and by N0K0 (-66%). Genotype comparisons showed that Oro 9 had the highest shoot dry matter while Albena had the lowest root dry matter. Effect of mineral deficiency on content and partitioning of N, P, K, Ca and Na was significant and varied according to treatments and among plant parts. Shoot dry weight was significantly correlated with root N content (r2=0.81) and root K content (r2=-0.61) for N0 and K0.


Sign in / Sign up

Export Citation Format

Share Document