scholarly journals ANALYSIS OF THE IMPACT OF ELECTRIC VEHICLES ON THE URBAN STRUCTURE OF RUSSIA IN THE CONTEXT OF INDUSTRY 4.0

2019 ◽  
pp. 14-18
Author(s):  
A. A. Kolmogorov ◽  
I, I. Troshko ◽  
I. V. Trifonov

This study will present a study on the impact of electric vehicles on Russia’s urban infrastructure. In the course of studying this issue, the current state of the electric vehicle market, the factors contributing to its development, and the specifics of the impact of this market on Russia’s urban infrastructure will be examined.

Vehicles ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 851-871
Author(s):  
Jonathan Wellings ◽  
David Greenwood ◽  
Stuart R. Coles

The electric vehicle market is an increasingly important aspect of the automotive industry. However, as a relatively new technology, several issues remain present within the industry. An analysis is utilised to examine these issues, along with how they affect the industry and how they can be tackled. Several key issues that affect the electric vehicle market, as well as how efforts to address these issues influence the market, are identified. The analysis also includes the examination of ethical issues, with the issues that arise from the production of raw materials for electric vehicles. The analysis and examination of ethical issues display a wide range of problems in the industry. However, it did highlight the efforts being made to lessen the effect of these problems by various groups, such as regulation by EU and US governing bodies on the materials mined. From this analysis, this paper identifies that many of the other factors examined are directly or indirectly influenced by political and economic factors, also examined in this review. This highlights the impact that governing bodies and businesses have on a vast number of issues that are present within the market and how they can resolve the harmful factors examined.


Author(s):  
Katrin Seddig ◽  
Patrick Jochem ◽  
Wolf Fichtner

AbstractElectric vehicles (i.e., battery and plug-in hybrid electric vehicles) are seen as one promising technology toward a sustainable transport system as they have the potential to reduce CO2 emissions. The forecast of their market penetration depends on various factors including the cost development of key components such as the electric battery. This chapter focuses on the impact of experience curves on the battery costs, and consequently on the electric vehicles’ market penetration, which is simulated by coupling two system dynamics transport models: ASTRA, representing Europe, and TE3, representing key non-European car markets. The results of the TE3 model show that the consideration of global endogenous learning curves has an impact on the battery costs and therefore, the development of the electric vehicle stock (“feedback loop”).


2020 ◽  
Vol 12 (16) ◽  
pp. 6369
Author(s):  
Shuping Wu ◽  
Zan Yang

As electric vehicles can significantly reduce the direct carbon emissions from petroleum, promoting the development of the electric vehicle market has been a new concentration for the auto industry. However, insufficient public charging infrastructure has become a significant obstacle to the further growth of electric vehicle sales. This paper estimates the impact of the availability of public charging piles on electric vehicle sales using panel regression analysis. It then investigates the barriers to the construction and operation of the public charging piles based on a field survey in 101 communities in Beijing, China. We find that insufficient public charging piles would significantly limit the sales of electric vehicles, in particular when the public charging piles are built up for specific users or in developed regions where private parking spaces are limited. It is found that the top four barriers are limited parking spaces, complicated circuit modification, unclear responsibilities for property management companies, and the objection or high mobility of existing parking space users.


Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2479 ◽  
Author(s):  
Yue Wang ◽  
Zhong Liu ◽  
Jianmai Shi ◽  
Guohua Wu ◽  
Rui Wang

The promotion of the battery electric vehicle has become a worldwide problem for governments due to its short endurance range and slow charging rate. Besides an appropriate network of charging facilities, a subsidy has proved to be an effective way to increase the market share of battery electric vehicles. In this paper, we investigate the joint optimal policy for a subsidy on electric vehicles and infrastructure construction in a highway network, where the impact of siting and sizing of fast charging stations and the impact of subsidy on the potential electric vehicle flows is considered. A new specified local search (LS)-based algorithm is developed to maximize the overall number of available battery electric vehicles in the network, which can get provide better solutions in most situations when compared with existed algorithms. Moreover, we firstly combined the existing algorithms to establish a multi-stage optimization method, which can obtain better solutions than all existed algorithms. A practical case from the highway network in Hunan, China, is studied to analyze the factors that impact the choice of subsidy and the deployment of charging stations. The results prove that the joint policy for subsidy and infrastructure construction can be effectively improved with the optimization model and the algorithms we developed. The managerial analysis indicates that the improvement on the capacity of charging facility can increase the proportion of construction fees in the total budget, while the improvement in the endurance range of battery electric vehicles is more efficient in expanding battery electric vehicle adoption in the highway network. A more detailed formulation of the battery electric vehicle flow demand and equilibrium situation will be studied in the future.


2021 ◽  
Vol 13 (22) ◽  
pp. 12379
Author(s):  
Raymond Kene ◽  
Thomas Olwal ◽  
Barend J. van Wyk

The future direction of electric vehicle (EV) transportation in relation to the energy demand for charging EVs needs a more sustainable roadmap, compared to the current reliance on the centralised electricity grid system. It is common knowledge that the current state of electricity grids in the biggest economies of the world today suffer a perennial problem of power losses; and were not designed for the uptake and integration of the growing number of large-scale EV charging power demands from the grids. To promote sustainable EV transportation, this study aims to review the current state of research and development around this field. This study is significant to the effect that it accomplishes four major objectives. (1) First, the implication of large-scale EV integration to the electricity grid is assessed by looking at the impact on the distribution network. (2) Secondly, it provides energy management strategies for optimizing plug-in EVs load demand on the electricity distribution network. (3) It provides a clear direction and an overview on sustainable EV charging infrastructure, which is highlighted as one of the key factors that enables the promotion and sustainability of the EV market and transportation sector, re-engineered to support the United Nations Climate Change Agenda. Finally, a conclusion is made with some policy recommendations provided for the promotion of the electric vehicle market and widespread adoption in any economy of the world.


2021 ◽  
Vol 17 (5) ◽  
pp. 913-939
Author(s):  
Tat'yana S. REMIZOVA ◽  
Dmitrii B. KOSHELEV

Subject. The article reviews various transport electrification scenarios, which would help reduce the CO2 emissions and environmental threats. The environmental and economic security can also be affected if the State insufficiently understands the importance of electric vehicle development, their popularization. It is also crucial to encourage the consumption, develop the infrastructure, innovative projects, which reshape the power engineering structure. Objectives. We determine how global trends influence the production and integration of electric vehicles in Russia. We also evaluate the environmental and cost effectiveness of morot vehicle electrification, opportunities and trajectories for the electric vehicle development nationwide. Methods. The study involves methods used to summarize regulatory, empirical and theoretical data, and general and partial scientific methods and techniques, such as abstraction, analysis, analogy, etc. Results. The article shows the extent of electric transport development worldwide, and focuses on environmental issues and opportunities to reduce the carbon footprint by using electric vehicles and renewable energy sources. We point out opportunities, threats, prospects and disadvantages of the electric vehicle use in Russia. The article indicates how the use of electric cars can be developed in Russia, considering changes in the production structure and the generation of positive effects as much as possible. Conclusions. Currently, Russia evidently lags behind the global production and use of electric cars, without having a priority of the carbon footprint reduction. The strategy for the car segment advancement is underdeveloped. Suggested herein, the ideas for the electric car segment development are aimed to encourage the consumption, production, advancement of infrastructure and innovative projects, and ensure the environmental security of the country.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4809
Author(s):  
Monika Topel ◽  
Josefine Grundius

As part of decarbonization efforts, countries are adapting their energy policies accordingly. Sweden has established ambitious energy goals, which include CO2 emissions reduction in the transport sector and high integration of renewables in the electricity sector. Coupling the two can be an enabling force towards fossil freedom. An increased share of electric vehicles is therefore a promising solution in this regard. However, there are challenges concerning the impact that a surge of electric vehicles would have on the electric infrastructure. Moreover, in Stockholm there is a shortage of power capacity due to limitations in the national transmission infrastructure, which further aggravates the situation. This paper develops a scenario-based simulation study to evaluate the impact of electric vehicle loads on the distribution grid of a Stockholm neighborhood. In this process, limiting factors and bottlenecks in the network were identified as being related to the peak power and transformer capacities for the years of 2025 and 2031. Two load management strategies and their potential to mitigate the power peaks generated from uncontrolled charging were investigated for the critical years.


Author(s):  
Regina Da Silva Ornellas

The growth of cities and populations has promoted the increase of income and consequently that of consumption. Some perceive growth in consumption as sign of a society´s development. However, upon analysis of the results arising from the increase of such consumption, it becomes apparent that it does spring both good and poor results, some of which might be irreversible. This consumption has been noted for expanding in both an unbridled and unsustainable manner, giving rise to damaging effects, particularly to the planet. An example of such rampant growth is that of the fleet of vehicles, which leads to increased traffic jams in the City that in turn generates pollutant gas emissions. Given this scenario, Collaborative Consumption - which in earlier days was solely perceived as a regular sharing mode (barter, loan, lease and exchange between people) - is currently being established and disseminated through social networks, mobile devices and geolocation systems, technologies which enable anyone to find available and globally shareable locations, products and services. This movement, which is ever gaining strength and character, alongside electric vehicle technologies, is capable of transforming businesses and the way a society lives and consumes, bringing to light the philosophy of cost reduction and the incentive for passive consumers to become active contributors of a sustainable technology. This study´s purpose is to understand the dynamics of Collaborative Consumption and the impact of adherence to this new movement, on Electric Vehicles.


2021 ◽  
Vol 9 ◽  
Author(s):  
Elias Hartvigsson ◽  
Niklas Jakobsson ◽  
Maria Taljegard ◽  
Mikael Odenberger

Electrification of transportation using electric vehicles has a large potential to reduce transport related emissions but could potentially cause issues in generation and distribution of electricity. This study uses GPS measured driving patterns from conventional gasoline and diesel cars in western Sweden and Seattle, United States, to estimate and analyze expected charging coincidence assuming these driving patterns were the same for electric vehicles. The results show that the electric vehicle charging power demand in western Sweden and Seattle is 50–183% higher compared to studies that were relying on national household travel surveys in Sweden and United States. The after-coincidence charging power demand from GPS measured driving behavior converges at 1.8 kW or lower for Sweden and at 2.1 kW or lower for the United States The results show that nominal charging power has the largest impact on after-coincidence charging power demand, followed by the vehicle’s electricity consumption and lastly the charging location. We also find that the reduction in charging demand, when charging is moved in time, is largest for few vehicles and reduces as the number of vehicles increase. Our results are important when analyzing the impact from large scale introduction of electric vehicles on electricity distribution and generation.


Sign in / Sign up

Export Citation Format

Share Document