scholarly journals Nephroprotective effect of turmeric on oxidative stress, renal histopathology and toxicity induced by gentamicin

Author(s):  
Sangita Devrao Jogdand ◽  
Raju Shinde ◽  
Vivek Sinha ◽  
Naman Chandrakar

Background: Commonly used aminoglycosides have frequent side effect of nephrotoxicity, still are preferred by clinicians because of efficacy against gram negative bacteria, resistant bacteria, nosocomial infections and cost effectiveness. Gentamicin produces oxidative stress; substances ameliorating stress are used to reduce toxicity. Turmeric has multiple medicinal properties including potent antioxidant activity, hence study was undertaken.Methods: Eight groups containing six animals in each group, treated for 15 days. First group treated with normal saline. Second, fourth and sixth group treated with only gentamicin- sacrificed at 16, 22, 29th day. Third, fifth and seventh group treated with gentamicin and turmeric simultaneously and sacrificed on 16, 22, 29th day. Eighth group was pre-treated with turmeric for thirty days and concurrently treated with gentamicin and turmeric for 15 days and sacrificed on 16th day. Levels of blood urea, serum creatinine, superoxide dismutase and histopathological grades were assessed each time.Results: Severe renal dysfunction (146 ± 9.2, 2.03 ± 0.26), highest renal injury grading (3.66 ± 0.24) was observed in only gentamicin treated groups followed by spontaneous recovery after withdrawal of drug but with higher levels of oxidative stress (0.04 ± 0.01). Gentamicin and Turmeric treated groups maintained renal function and had lower level of renal damage grades and oxidative stress. Turmeric pre-treated group was having lowest oxidative stress (0.12 ± 0.03), histopathology grade (0.60 ± 0.06) with normal renal functions.Conclusions: Turmeric has potent antioxidant property which effectively protects kidney from damage induced because of gentamicin.

Planta Medica ◽  
2020 ◽  
Vol 86 (12) ◽  
pp. 876-883
Author(s):  
Moon Ho Do ◽  
Jiwon Choi ◽  
Yoonsook Kim ◽  
Sang Keun Ha ◽  
Guijae Yoo ◽  
...  

AbstractAdvanced glycation end products and methylglyoxal are known to show increased levels in diabetic conditions and induce diverse metabolic disorders. However, the antiglycation ability of the bark of Syzygium aromaticum is not yet studied. In this study, we determined the inhibitory effects of S. aromaticum on AGE formation. Moreover, S. aromaticum showed breakage and inhibitory ability against the formation of AGE-collagen crosslinks. In SV40 MES13 cells, treatment with the S. aromaticum extract significantly ameliorated MG-induced oxidative stress as well as cytotoxicity. Furthermore, in the S. aromaticum extract-treated group, there was a reduction in levels of several diabetic markers, such as blood glucose, kidney weight, and urinary albumin to creatinine ratio in streptozotocin-induced diabetic rats. Treatment with the S. aromaticum extract significantly increased the expression of nuclear factor erythroid 2-related factor 2, a transcription factor involved in the expression of antioxidant enzymes. Moreover, the treatment significantly upregulated the expression of glyoxalase 1 and downregulated the expression of receptor for AGEs. These results suggest that the S. aromaticum extract might ameliorate diabetes-induced renal damage by inhibiting the AGE-induced glucotoxicity and oxidative stress through the Nrf2/Glo1 pathway.


Author(s):  
Shreya Mandal ◽  
Arpita Patra ◽  
Shrabani Pradhan ◽  
Suchismita Roy ◽  
Animesh Samanta ◽  
...  

Objective: The aim of this study was to evaluate the antioxidant property of the isolated phytocompounds from TA (Terminalia arjuna) bark and in vivo study for nephro-protective and oxidative stress reducing activity in experimentally induced albino male rats.Methods: Fractions from methanol crude TA extract were collected by column chromatography and F27, F28, F29 fractions were selected on the basis of antioxidant property by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay. The in vivo study performed by 30 albino male rats which were randomly divided into five groups: Group I (control)were taken normal food and water, Groups II (uremic) were injected acetaminophen intraperitoneally at the dose of 500 mg/kg/d for 10 d, Group III, IV and V(extract treatment) acetaminophen intraperitoneally at the dose of 500 mg/kg/d for 10 d with co-administered orally of methanol fraction F27, F28, F29 at the dose of 100 mg/kg/d for 15 d respectively.Results: After scarification of rats, the uremic marker plasma urea (80%), creatinine (85%) were elevated and antioxidant enzyme marker such as plasma SOD and catalase level were significantly increased (p<0.05)in Group IV compared to Group II. The total phenolic content of the F28 methanolic fraction was (815.48±8.11) mg gallic acid equivalent/g of extract. For isolation of available compound by 1H NMR study in F28 methanol fraction of TA bark was arjunoside IV which contained olefinic proton (a pair of carbon atom linked with double bond).Conclusion: Among the three methanolic fraction of TA bark, F28 was shown best antioxidative, nephron-protective and oxidative stress reducing property. 


2003 ◽  
Vol 34 (11) ◽  
pp. 1390-1398 ◽  
Author(s):  
Diana Barrera ◽  
Perla D. Maldonado ◽  
Omar N. Medina-Campos ◽  
Rogelio Hernández-Pando ◽  
María E. Ibarra-Rubio ◽  
...  

Author(s):  
Kurmeti Sudhakar ◽  
Mesram Nageshwar ◽  
Pratap Reddy K

  Objective: This study reports protective effect of Abelmoschus moschatus seed extract against sodium fluoride-induced neurodegeneration through oxidative stress, neurohistological, and behavioral observations in Wistar rats.Methods: A total of 20 Wistar rats (around 250 g) were randomly classified into four groups, namely, control, fluoride (NaF), fluoride + A. moschatus seed aqueous extract (AMAE), and fluoride + A. moschatus seed ethanol extract (AMEE). The control group animals received normal tap water, fluoride group received fluoridated water at the rate of 40 mg/kg b. wt., 3rd group rats treated with fluoride (40 mg/kg b. wt.) + AMAE (300 mg/kg b. wt.), and 4th group rats treated with fluoride (40 mg/kg b. wt.) + AMEE (300 mg/kg b. wt.). Neurobehavioral responses of rotarod, hot plate, and maze learning tests and oxidantive stress markers including lipid peroxidation (LPO), GSH levels, superoxide dismutase, CAT, and GSH peroxidase (GPx) activities, and also histology with H and E as well as congo red staining were studied in control, fluoride, and A. moschatus seed extract treated against fluoride groups.Results: Decreased neurobehavioral responses with rotarod, hot plate, and maze and enhanced LPO (p<0.05) levels were found in fluoride received animals. Whereas, the superoxide dismutase (SOD), CAT, GSH, and GPx were decreased (p<0.05) in NaF treatment. The rats received seed extract along with NaF showed significant reversal of behavioral and oxidative stress markers and the effect of ethanol extract was more pronounced than aqueous extract. The fluoride-treated group showed disturbed cell structure and reduced number of cells in H and E as well as congo red staining which was reversed in cell morphology and restored cell number in seed extract against NaF-treated group. As a result of increased LPO, decreased antioxidant system, and decreased number of cells, neurodegeneration was observed resulting in the disturbance in functions associated with reported behavior.Conclusion: Okra with high antioxidants activity, seed extract showed reversal of LPO levels and antioxidant status in the brain tissue. And also plant extract administered rats displayed normal cell structure and number of cells than only fluoride received group. Therefore, the aqueous and ethanolic extract of A. moschatus plant seeds has neuroprotective effects against fluoride-induced motor, nociceptive, learning behavior, and on histological structure of brain through antioxidant mechanism. The ethanol extract has shown more efficacy than aqueous extract.


2011 ◽  
Vol 30 (10) ◽  
pp. 1626-1634 ◽  
Author(s):  
Amit K Sharma ◽  
Swapan K Bhattacharya ◽  
Naresh Khanna ◽  
Ashok K Tripathi ◽  
Tarun Arora ◽  
...  

Progesterone (a neurosteroid) is an important modulator of the nervous system functioning. Organophosphorus pesticides like phosphamidon have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was therefore designed to investigate the effects of progesterone (PROG) on phosphamidon-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and prolongation of TL in the phosphamidon (1.74 mg/kg/d; p.o.) treated group at weeks 6 and 8 as compared to the control group. Two weeks treatment with PROG (15 mg/kg/d; i.p.) antagonized the effect of phosphamidon on SDL as well as TL. Phosphamidon alone produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. Treatment with PROG (15 mg/kg/d; i.p.) attenuated the effect of phosphamidon on oxidative stress. Together, the results showed that progesterone attenuated the cognitive dysfunction and increased oxidative stress induced by phosphamidon in the brain.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shoulong Deng ◽  
Kun Yu ◽  
Baolu Zhang ◽  
Yuchang Yao ◽  
Zhixian Wang ◽  
...  

Many groups of Gram-negative bacteria cause diseases that are harmful to sheep. Toll-like receptor 4 (TLR4), which is critical for detecting Gram-negative bacteria by the innate immune system, is activated by lipopolysaccharide (LPS) to initiate inflammatory responses and oxidative stress. Oxidation intermediates are essential activators of oxidative stress, as low levels of free radicals form a stressful oxidative environment that can clear invading pathogens. NO is an oxidation intermediate and its generation is regulated by nitric oxide synthase (iNOS). Guanosine triphosphate cyclohydrolase (GCHI) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) synthesis, which is essential for the production of inducible iNOS. Previously, we made vectors to overexpress the sheepTLR4gene. Herein, first generation (G1) of transgenic sheep was stimulated with LPSin vivoandin vitro, and oxidative stress and GCHI expression were investigated. Oxidative injury caused by TLR4 overexpression was tightly regulated in tissues. However, the transgenic (Tg) group still secreted nitric oxide (NO) when an iNOS inhibitor was added. Furthermore, GCHI expression remained upregulated in both serum and monocytes/macrophages. Thus, overexpression of TLR4 in transgenic sheep might accelerate the clearance of invading microbes through NO generation following LPS stimulation. Additionally, TLR4 overexpression also enhances GCHI activation.


Author(s):  
Tijani Stephanie Abiola ◽  
Olori Ogaraya David ◽  
Farombi Ebenezer Olatunde

Aim: Manganese (Mn) is an essential trace element in many cellular processes. However, there is dearth of literature on its influence on indomethacin-induced hepatorenal damage. Therefore, this study was conducted to investigate the effect of manganese on indomethacin-induced hepatorenal damage in rats. Methods: Rats were divided into four groups of eight rats consisting of control group, indomethacin (IND) alone (20 mg/kg), Mn alone (10 mg/kg) and co-treated group that were treated orally for 14 consecutive days. Twenty four hours after treatment, under pentobarbital anesthesia, blood was collected and liver was excised to prepare homogenate and histology staining. Liver and kidney function tests aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), glutamine dehydrogenase (GLDH), sorbitol dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PD), bilirubin (BIL), urea, creatinine, cholesterol (CHOL), triglycerides (TG), low and high density lipoprotein (LDL and HDL), electrolytes and oxidative stress superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and lipid peroxidation (LPO) biomarkers were assessed. Results: The results showed that indomethacin caused hepatorenal damage in rats manifested with increase in serum hepatic and renal function biomarkers. But co-administration of IND with Mn significantly (p < 0.05) decreased the level of hepatorenal biomarkers. Additionally, co-administration of IND with Mn improved the antioxidant status with concomitant reduction of LPO and restored the integrity of the liver and kidney histologically. Conclusion: The results of this study emphasize that co-administration of IND with Mn to rats alleviated IND-induced hepatorenal toxicities and oxidative stress in rats.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiaoguang Liu ◽  
Weihua Xiao ◽  
Lifang Zhen ◽  
Yongzhan Zhou ◽  
Jian Shou

Objective Skeletal muscle contusion is one of the most common muscle injury in sports medicine and traumatology. Bone marrow mesenchymal stem cells (BMSCs) transplantation is a promising strategy for muscle regeneration. However, the roles of BMSCs, especially the mechanisms involved, in the regeneration of contused skeletal muscle are still not fully recognized. The aim of the study is to evaluate the potential of BMSCs transplantation for muscle regeneration and mechanisms involved after contusion. Methods Ninety-nine C57BL/6J mice were divided into three groups: control group (n=11), muscle contusion and BMSCs treated group (n=44), muscle contusion and sham treated group (n=44). BMSCs were immediately transplanted into gastrocnemius muscles (GMs) following direct contusion. At different time points (3, 6, 12 and 24 days) post-injury, the animals were killed and then GMs were harvested. Morphological and gene expression analyses were used to elevate the effect of BMSCs transplantation and mechanisms involved. Results The results indicate that BMSCs transplantation impairs muscle regeneration, as well as more fibrotic scar formation after skeletal muscle contusion. Furthermore, macrophages, inflammatory cytokines, chemokines, matrix metalloproteinases and oxidative stress related enzymes were significantly increased after BMSCs transplantation. These results suggest that BMSCs transplantation impairs skeletal muscle regeneration and that macrophages, inflammatory cytokines, chemokines, matrix metalloproteinases and oxidative stress related enzymes may be involved in the process. Conclusions BMSCs transplantation aggravates inflammation, oxidative stress and fibrosis, and impairs skeletal muscle regeneration, which shed new light on the role of BMSCs in regenerative medicine and cautions the application of BMSCs for muscle injury.


2019 ◽  
Vol 17 (2) ◽  
pp. 127 ◽  
Author(s):  
Khadijeh Mirzaei Khorramabadi ◽  
Ali Reza Talebi ◽  
Abolghasem Abbasi Sarcheshmeh ◽  
Aghdas Mirjalili

Background: Generation of free radicals and oxidative stress are a major contributorto diabetes. These factors lead to the development of diabetic testicles disorders.Objective: In this study, the protective effect of vitamin E on functional disordersassociated with diabetes induced oxidative stress in male reproductive systems hasbeen investigated.Materials and Methods: Thirty-three adult male Mice were divided into control,diabetic, and untreated diabetic groups. Streptozotocin was used to induce diabetes.In the treated group, vitamin E was given to the Mice intraperitoneally for 30 days.Then, animals were anesthetized and sacrificed. Animal testicles were isolated andhomogenized in phosphate buffer and used for measuring sperm count, motility andsurvival of sperm, MDA concentration and antioxidant capacity (TAC). Apoptosis wasalso performed with the TUNEL test.Results: The results of reduction (12.03±98.11) TAC, MDA concentration (–28.5±2.58),sperm motility (unstable sperma= 86.4±7.48), sperm count (171.51), Sperm morphology(natural morphology= 49.69±31.93) and abnormal morphology (9.77±49.7)with increased oxidative damage. These changes were statistically significant incomparison with the control group for all variables other than MDA (p= 0.05). Treatmentof vitamin E diabetic Mice improved the ability of antioxidants to prevent oxidativedamage in the testicles, restore the sperm movement, and increase the number ofnormal sperm as well as TAC. The level of apoptosis in the treated group has decreasedcompared to the untreated group.Conclusion: Vitamin E protects the reproductive system against diabetes mellitus.Therefore, it was concluded that vitamin E may be a suitable agent for protecting thesperm and testicular parameters against undesirable effects of diabetes.


Sign in / Sign up

Export Citation Format

Share Document