scholarly journals Parametric Analysis of Rainfall Variability Over Some Selected Locations in Nigeria

2021 ◽  
Vol 5 (1) ◽  
pp. 35-48
Author(s):  
Falaiye O. A ◽  
Olaitan A. G ◽  
Nwabachili S. C

Rainfall is one meteorological parameter that affects virtually all human activities. For instance, the amount of rainfall received in an area is an important determining factor in estimating or quantifying the amount of water available to meet various demands, such as agricultural, industrial, domestic water supply, and power generation. Climate change has generally been accepted to be a result of the emission of excess greenhouse gases. It has caused an increase in flooding, severe and more frequent droughts, increase in wildfires, and heatwaves in various parts of the globe. Climate change is said to have a considerable impact on the variability in hydro-meteorological variables such as rainfall, temperature, and evaporation. In this study, we carry out a parametric analysis of rainfall variability over some selected locations in Nigeria and determine the trend using surface observation data from seven weather stations. The datasets of rainfall used in this study were acquired; from the Nigerian Meteorological Agency (NIMET) for a period of 30 years (1980 to 2010) from seven locations; which are Abuja, Enugu, Ikeja, Ilorin, Maiduguri, Port Harcourt, and Sokoto, representing the six geographical zones of Nigeria. The results gotten showed an upward movement in the trend line which indicated an increase in the amount of rainfall received by the study areas. While some Cities (Maiduguri, Sokoto) received a large increase in the amount of rainfall received yearly, others received a slight increase such as Lagos, Port Harcourt, Ilorin, Abuja and Enugu.

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1314
Author(s):  
Danneille A. Townsend ◽  
Janez Sušnik ◽  
Pieter van der Zaag

Globally, freshwater resources are threatened, resulting in challenges for urban water supply and management. Climate change, population growth, and urbanization have only exacerbated this crisis. For the Caribbean, climate change through the impact of increasing temperatures and rainfall variability has resulted in more frequent and intense episodes of disasters including droughts and floods which have impaired the quantity and quality of freshwater supplies. Using Caribbean-specific climate forecasting, it is shown that rainfall totals in Kingston, Jamaica, are expected to reduce by 2030 and 2050 under two RCPs. In addition, the timing of the primary rainy season is expected to shift, potentially impacting water supply security. Analysis of the potential of rainwater harvesting (RWH) to augment supply and enhance water supply resilience shows that in two communities studied in Kingston, it can contribute up to 7% of total water supply. Household storage requirements are about 1 m3 per household, which is feasible. RWH offers the potential to contribute to climate change adaptation and mitigation measures at a household level. Policy, incentives, and increased awareness about the potential of RWH to meet non-potable household demand in Kingston must be improved, as well as efforts to reduce the currently unreasonably high levels of non-revenue water in order to move towards an integrated, sustainable, and climate-resilient urban water supply strategy for the city.


Significance It will increase rainfall variability and extreme events such as droughts and floods, as well as raising temperatures. These effects may trigger cascading risks to economic, social and political stability. Impacts The EU could play a key role in moderating climate effects as it shapes migration and security policy in the Sahel. The likelihood and severity of climate impacts will depend on socio-economic and political conditions in the region. Small-scale irrigation, climate-adapted seeds and traditional soil conservation techniques can help increase resilience to climate change.


2014 ◽  
Vol 18 (5) ◽  
pp. 1653-1662 ◽  
Author(s):  
X. Chen ◽  
D. Naresh ◽  
L. Upmanu ◽  
Z. Hao ◽  
L. Dong ◽  
...  

Abstract. China is facing a water resources crisis with growing concerns as to the reliable supply of water for agricultural, industrial and domestic needs. High inter-annual rainfall variability and increasing consumptive use across the country exacerbates the situation further and is a constraint on future development. For water sustainability, it is necessary to examine the differences in water demand and supply and their spatio-temporal distribution in order to quantify the dimensions of the water risk. Here, a detailed quantitative assessment of water risk as measured by the spatial distribution of cumulated deficits for China is presented. Considering daily precipitation and temperature variability over fifty years and the current water demands, risk measures are developed to inform county level water deficits that account for both within-year and across-year variations in climate. We choose political rather than watershed boundaries since economic activity and water use are organized by county and the political process is best informed through that unit. As expected, the risk measures highlight North China Plain counties as highly water stressed. Regions with high water stress have high inter-annual variability in rainfall and now have depleted groundwater aquifers. The stress components due to agricultural, industrial and domestic water demands are illustrated separately to assess the vulnerability of particular sectors within the country to provide a basis for targeted policy analysis for reducing water stress.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1529
Author(s):  
Saurav Kalita ◽  
Hanna Karlsson Potter ◽  
Martin Weih ◽  
Christel Baum ◽  
Åke Nordberg ◽  
...  

Short-rotation coppice (SRC) Salix plantations have the potential to provide fast-growing biomass feedstock with significant soil and climate mitigation benefits. Salix varieties exhibit significant variation in their physiological traits, growth patterns and soil ecology—but the effects of these variations have rarely been studied from a systems perspective. This study analyses the influence of variety on soil organic carbon (SOC) dynamics and climate impacts from Salix cultivation for heat production for a Swedish site with specific conditions. Soil carbon modelling was combined with a life cycle assessment (LCA) approach to quantify SOC sequestration and climate impacts over a 50-year period. The analysis used data from a Swedish field trial of six Salix varieties grown under fertilized and unfertilized treatments on Vertic Cambisols during 2001–2018. The Salix systems were compared with a reference case where heat is produced from natural gas and green fallow was the land use alternative. Climate impacts were determined using time-dependent LCA methodology—on a land-use (per hectare) and delivered energy unit (per MJheat) basis. All Salix varieties and treatments increased SOC, but the magnitude depended on the variety. Fertilization led to lower carbon sequestration than the equivalent unfertilized case. There was no clear relationship between biomass yield and SOC increase. In comparison with reference cases, all Salix varieties had significant potential for climate change mitigation. From a land-use perspective, high yield was the most important determining factor, followed by SOC sequestration, therefore high-yielding fertilized varieties such as ‘Tordis’, ‘Tora’ and ‘Björn’ performed best. On an energy-delivered basis, SOC sequestration potential was the determining factor for the climate change mitigation effect, with unfertilized ‘Jorr’ and ‘Loden’ outperforming the other varieties. These results show that Salix variety has a strong influence on SOC sequestration potential, biomass yield, growth pattern, response to fertilization and, ultimately, climate impact.


Agromet ◽  
2011 ◽  
Vol 25 (1) ◽  
pp. 9
Author(s):  
Siti Nurdhawata ◽  
Bambang Dwi Dasanto

<em>Generally, reservoir can overcome problem of water availability in particular region. The reservoir collects excess water during rainy season to be used at the time of water shortage during dry season. In Pidie, the largest water sources are from Krueng Baro Geunik and Krueng Tiro. The reservoir is located at Krueng Rukoh with Krueng Tiro as the source of water supply. The reservoir provides water for irrigating and supplying domestic water in Baro (11.950 ha) and Tiro (6.330 ha) areas. There are 13 districts (216718 inhabitants) use the water from this reservoir. Given the population growing at rate of 0.52% then the water demand in the region increases. The aim of study was to estimate the volume of water entering the reservoir using the tank model. Calibration curve between the tank model output and observation data showed good correlation (R<sup>2</sup> = 0.7). The calibrated model was then used to calculate the discharge at Krueng Baro Geunik. A water balance analysis showed that the highest deficit occurred in September and the highest surplus in November. Based on this analysis, the capacity of Krueng Rukoh reservoir is able to fulfill its function assuming the rate of population growth and the irrigation area are constant.</em>


Author(s):  
H. O. Stanley ◽  
P. T. Bestmann ◽  
C. J. Ugboma

This study examined the public perception of climate change impact on human health risks in Trans Amadi area of Port Harcourt, Rivers State, Nigeria. An in-depth questionnaire on public perception of climate change and possible implications on human health was administered to participants within Trans Amadi area of Port Harcourt and their corresponding responses were analyzed and discussed. Demography of respondents showed 44% are male while 56% are females. On the educational level of respondents, the survey showed that 3% had just primary school education, 41% had up to secondary school education, 52% had acquired tertiary education and just 2% had non-formal education or are uneducated. Survey on respondents understanding and perception on climate change showed 85% - 93% response on awareness; 77% completely agreed that climate change poses a threat for the people around the world and that climate change is caused by human activities and the global temperature has changed compared to previous decades; 59% of the respondents somewhat agreed that the temperature within Trans Amadi region has changed drastically while 44% believes that climate change is only because of the pollution from industries within the area. A preponderance of the respondents (78%) strongly believed that climate change impacts most on vector borne diseases / infectious disease; 75% strongly believed that it causes shortage in food supply, 57% strongly believed it causes air pollutants while 45% strongly believed it impacts heavily on storm and flooding. There was a generally high awareness of the causes and effects of climate change among the respondents. Therefore compliance to reduce emission of gases that lead to global warming should be enforced in all areas and sectors of the economy and green approaches should be adopted in all that we do as humans.


2021 ◽  
Vol 893 (1) ◽  
pp. 012006
Author(s):  
F Aditya ◽  
E Gusmayanti ◽  
J Sudrajat

Abstract Climate change has been a prominent issue in the last decade. Climate change on a global scale does not necessarily have the same effect in different regions. Rainfall is a crucial weather element related to climate change. Rainfall trends analysis is an appropriate step in assessing the impact of climate change on water availability and food security. This study examines rainfall variations and changes at West Kalimantan, focusing on Mempawah and Kubu Raya from 2000-2019. The Mann-Kendall (MK) and Sen's Slope estimator test, which can determine rainfall variability and long-term monotonic trends, were utilized to analyze 12 rainfall stations. The findings revealed that the annual rainfall pattern prevailed in all locations. Mempawah region tends to experience a downward trend, while Kubu Raya had an upward trend. However, a significant trend (at 95% confidence level) was identified in Sungai Kunyit with a slope value of -33.20 mm/year. This trend indicates that Sungai Kunyit will become drier in the future. The results of monthly rainfall analysis showed that significant upward and downward trends were detected in eight locations. Rainfall trends indicate that climate change has occurred in this region.


2020 ◽  
Vol 3 (1) ◽  
pp. 1-17
Author(s):  
Mbewe Jacqueline ◽  
Kabwe Harnadih Mubanga

Purpose: Climate change affects local and global rainfall patterns and hence has a counter effect on smallholder agriculture. Impacts of climate change on agriculture are largely due to rainfall variability resulting in reduced yields due to crop-water stress and emergency of pathogens and diseases. In Zambia, climate change has been manifested through increased intensity of droughts and floods. These rainfall anomalies adversely affect agriculture and food systems. In order to survive the impacts of climate change and variability, smallholder farmers in Chongwe have adopted their livelihoods and farming systems to the new climatic patterns.Methodology: This study assessed how smallholder farmers in Chongwe District have adopted their livelihoods as a response to changed climatic conditions. It also investigated the perceptions of smallholder farmers as regards changes in aspects of their climatic conditions. Data collection involved a critical review of literature related to climate change and agriculture, observations, semi- structured interviews with 60 smallholder farmers and eight key informants. The data were analysed using multiple analysis techniques which included the descriptive statistics, One-way analysis of Variance (ANOVA), and the post-hoc Least Square Difference for pairwise comparisons of incomes from different livelihoods engaged in by smallholder farmers .The gendered comparisons of livelihood engagement was done using the chi-square test of association.Findings: The results showed that all farmers perceived occurrence of changes in climatic conditions in the light of changed rainfall patterns in that there has been uncertainty in onset of rains, short rainy season, more intermittent rainfall and increased frequency of intra-seasonal droughts. These changes have led to farmers to adopt such farming techniques as potholing in preference to oxen and tractor ploughing when farming is done on smaller pieces of land. There was a significant difference in the mean annual incomes generated from on-farm livelihoods (ZMW 3677.59; n=58) and off-farm livelihoods (ZMW 6840.91; n = 58) (p= 0.001). Farmers generated the highest income returns by engaging in casual work (ZMW 10307.69; n = 13) compared to every other livelihoods common in the area such as gardening (p=0.002), petty trade (p=0.002) and on-farm livelihoods (p=0.001).Contribution to policy, theory and practice: It was therefore concluded that diversification of income through diversified livelihoods would help smallholder farmers enhance their resilience in the face of changed climatic conditions. On-farm livelihoods should not always be the main income source for farmers as results indicated that farmers engaged in casual work generated higher incomes than those who depended on farming. It was recommended that policy direction should be towards introduction of a gender responsive credit facility that can help improve women’s engagement in off-farm income generating livelihoods, as well as encourage climate change resilience.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 115 ◽  
Author(s):  
Roxelane Cakir ◽  
Mélanie Raimonet ◽  
Sabine Sauvage ◽  
Javier Paredes-Arquiola ◽  
Youen Grusson ◽  
...  

Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and −31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources.


2016 ◽  
Vol 4 (3) ◽  
pp. 13 ◽  
Author(s):  
Touré Halimatou ◽  
Zampaligre Nouhoun ◽  
Traoré Kalifa ◽  
Kyei-Baffour Nicholas

Several studies predict that climate change will highly affect the African continent. These changes in climate and climate variability may be challenging issues for future economic development of the continent in general, and particularly in the region of sub Saharan Africa. Offering a case study of Sahelian zone of Mali in the present study aimed to understand farmers’ perceptions of climate variability and change and to evaluate adaptation options used by farmers in the Cinzana commune of Mali. One hundred and nineteen farmers were interviewed using a questionnaire designed with six sections. The result showed that all farmers interviewed were aware of climate change and climate variability. The Farmers perceived a decrease in annual rainfall variability and an increase of temperature as main factors of climate change and climate variability. The observed meteorological data, showed a decrease of precipitation distribution during the last 14 years of which was observed by farmers. Several strategies such as selling animals, use of improved crop varieties, new activities (outside agriculture) and credit were the commonly preferred adaptation strategies to deal with climate change and variability. Factors surveyed, age, gender, education, household size, farm size were found to be significantly correlated to self-reported to adaptation.


Sign in / Sign up

Export Citation Format

Share Document