scholarly journals Occurrence of Antimicrobial Resistance in Foodborne Bacteria (Campylobacter and E. coli): A Food Safety Issue and Public Health Hazard

Author(s):  
Mohamed-Yousif Ibrahim Mohamed

Campylobacter and Escherichia coli (E. coli) are prominent bacterial causes of human gastroenteritis in the developing countries and the emergence of antibiotic resistance of these bacteria has been widely reported to be on the increase, particularly because of the increase in the number of resistant Campylobacter and E. coli isolated from human infections. The widespread use of antimicrobial drugs for therapeutic, prophylactic, and preventive purposes in modern food animal husbandry is a great concern in terms of the development of antibiotic resistance in many bacteria, and, therefore, a potential public health threat. This review simply describes the occurrence, spreading and public health significance of antimicrobial resistance in Campylobacter and E. coli.

1979 ◽  
Vol 42 (2) ◽  
pp. 161-163 ◽  
Author(s):  
ROBERT M. TWEDT ◽  
BRENDA K. BOUTIN

Several coliform species other than Escherichia coli are often associated with and possibly responsible for acute and chronic diarrheal disease. Recent evidence suggests that non-Escherichia coli coliforms may be capable of colonizing the human intestine and producing enterotoxin(s) in high-yield. Whether these organisms are newly capable of causing disease because of infestation with extrachromosomal factors mediating pathogenicity or simply because of inherent pathogenic capabilities that have gone unrecognized, they pose a potential health hazard. Food, medical, and public health microbiologists should be aware that the non-E. coli coliforms contaminating foods may be potential enteropathogens. This possibility may make determination of their pathogenic capabilities even more important than identification of their taxonomic characteristics.


2011 ◽  
Vol 74 (8) ◽  
pp. 1328-1333 ◽  
Author(s):  
ANGELA COOK ◽  
RICHARD J. REID-SMITH ◽  
REBECCA J. IRWIN ◽  
SCOTT A. McEWEN ◽  
VIRGINIA YOUNG ◽  
...  

This study estimated the prevalence of Escherichia coli isolates in fresh retail milk-fed veal scallopini pieces obtained from grocery stores in Ontario, Canada. In addition, the prevalence and antimicrobial resistance patterns were examined for points of public health significance. One hundred fifty-three milk-fed veal samples were collected over the course of two sampling phases, January to May 2004 and November 2004 to January 2005. E. coli isolates were recovered from 87% (95% confidence interval, 80.54 to 91.83%) of samples, and antimicrobial susceptibility testing was conducted on 392 isolates. The prevalence of resistance to one or more antimicrobials was 70% (274 of 392), while the resistance to five or more antimicrobials was 33% (128 of 392). Resistance to ceftiofur (2.8%), ceftriaxone (3.6%), nalidixic acid (12%), and ciprofloxacin (3.8%) alone or in combination was observed. Eighty-five resistance patterns were observed; resistance to tetracycline only (7.4%) was observed most frequently. Individual antimicrobial resistance prevalence levels were compared with grain-fed veal and retail beef data from samples collected in Ontario. In general, resistance to individual antimicrobials was observed more frequently in E. coli isolates from milk-fed veal than in isolates from grain-fed veal and beef. Resistance to one or more antimicrobials and to five or more antimicrobials in E. coli isolates was more frequent in isolates from milk-fed veal than in isolates from grain-fed veal and beef. This study provides baseline data on the occurrence of resistance in E. coli isolates from milk-fed veal that can be compared with data for other commodities. Additionally, E. coli resistance patterns may serve as an indicator of antimicrobial exposure.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1450
Author(s):  
Woinshet Hailu ◽  
Yosra A. Helmy ◽  
Geoffrey Carney-Knisely ◽  
Michael Kauffman ◽  
Dean Fraga ◽  
...  

Foodborne pathogens significantly impact public health globally. Excessive antimicrobial use plays a significant role in the development of the public health crisis of antibiotic resistance. Here, we determined the prevalence and antimicrobial resistance profiles of E. coli O157, Salmonella, L. monocytogenes, and Campylobacter isolated between 2016 and 2020 from small scale agricultural settings that were amended with dairy cattle or poultry manure in Northeastern Ohio. The total prevalence of the foodborne pathogens was 19.3%: Campylobacter 8%, Listeria monocytogenes 7.9%, Escherichia coli O157 1.8%, and Salmonella 1.5%. The prevalence was significantly higher in dairy cattle (87.7%) compared to poultry (12.2%) manure amended farms. Furthermore, the prevalence was higher in manure samples (84%) compared to soil samples (15.9%; p < 0.05). Multiple drug resistance was observed in 73%, 77%, 100%, and 57.3% of E. coli O157, Salmonella, L. monocytogenes, and Campylobacter isolates recovered, respectively. The most frequently observed resistance genes were mphA, aadA, and aphA1 in E. coli O157; blaTEM, tet(B), and strA in Salmonella; penA, ampC, lde, ermB, tet(O), and aadB in L. monocytogenes and blaOXA-61, tet(O), and aadE in Campylobacter. Our results highlight the critical need to address the dissemination of foodborne pathogens and antibiotic resistance in agricultural settings.


2019 ◽  
Vol 82 (7) ◽  
pp. 1130-1134 ◽  
Author(s):  
VANESSA SILVA ◽  
JOÃO NUNES ◽  
ANÍCIA GOMES ◽  
ROSA CAPITA ◽  
CARLOS ALONSO-CALLEJA ◽  
...  

ABSTRACT We studied 50 antimicrobial resistance mechanisms associated with Escherichia coli strains isolated from five species of commercial fish to evaluate the carriage and type of extended-spectrum β-lactamases (ESBLs) in these isolates. One hundred fifty samples of fresh raw fish were collected from large supermarkets and fish markets in northern Portugal during 2017. Thirty samples from each species were screened for the presence of E. coli and ESBL-producing E. coli. The samples were spread onto Levine plates with or without cefotaxime (2 μg/mL). The sensitivity of the isolates was determined for 16 antibiotics. The resistance and virulence genes were investigated by PCR. From the 150 samples, 45 E. coli isolates were recovered, and 3 of these isolates produced ESBL. All of these ESBL-producing isolates were resistant to β-lactams and harbored the blaCTX-M-1 and blaTEM genes, and all belonged to phylogenetic group A. One ESBL-producing E. coli isolate also was resistant to tetracycline and harbored the tet(A) gene, and another isolate was resistant to streptomycin and harbored the aadA gene. The remaining E. coli isolates were resistant to individual or combinations of the following antibiotics: tetracycline (16 isolates), sulfamethoxazole-trimethoprim (10 isolates), streptomycin (9 isolates), ampicillin (8 isolates), and chloramphenicol (2 isolates). The blaTEM, tet(A), aadA, and cmlA genes and combinations of sul genes were detected among most isolates that were resistant to ampicillin, tetracycline, streptomycin, chloramphenicol, and sulfamethoxazole-trimethoprim, respectively. The unmonitored and excessive use of antibiotics in aquatic environments promotes the development and propagation of antimicrobial resistance, and fish can be reservoirs of antibiotic resistance genes, which can easily be transmitted to humans through the consumption of raw fish, creating a public health problem. HIGHLIGHTS


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pouya Reshadi ◽  
Fatemeh Heydari ◽  
Reza Ghanbarpour ◽  
Mahboube Bagheri ◽  
Maziar Jajarmi ◽  
...  

Abstract Background Transmission of antimicrobial resistant and virulent Escherichia coli (E. coli) from animal to human has been considered as a public health concern. This study aimed to determine the phylogenetic background and prevalence of diarrheagenic E. coli and antimicrobial resistance in healthy riding-horses in Iran. In this research, the genes related to six main pathotypes of E. coli were screened. Also, genotypic and phenotypic antimicrobial resistance against commonly used antibiotics were studied, then phylo-grouping was performed on all the isolates. Results Out of 65 analyzed isolates, 29.23 % (n = 19) were determined as STEC and 6.15 % (n = 4) as potential EPEC. The most prevalent antimicrobial resistance phenotypes were against amoxicillin/clavulanic acid (46.2 %) and ceftriaxone (38.5 %). blaTEM was the most detected resistance gene (98.4 %) among the isolates and 26.15 % of the E. coli isolates were determined as multi-drug resistant (MDR). Three phylo-types including B1 (76.92 %), A (13.85 %) and D (3.08 %) were detected among the isolates. Conclusions Due to the close interaction of horses and humans, these findings would place emphasis on the pathogenic and zoonotic potential of the equine strains and may help to design antimicrobial resistance stewardship programs to control the dissemination of virulent and multi-drug resistant E. coli strains in the community.


2007 ◽  
Vol 73 (20) ◽  
pp. 6566-6576 ◽  
Author(s):  
Moussa S. Diarra ◽  
Fred G. Silversides ◽  
Fatoumata Diarrassouba ◽  
Jane Pritchard ◽  
Luke Masson ◽  
...  

ABSTRACT The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), bla TEM, sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for bla CMY-2. The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in broiler chicken production.


2019 ◽  
Vol 12 (7) ◽  
pp. 984-993 ◽  
Author(s):  
Md. Abdus Sobur ◽  
Abdullah Al Momen Sabuj ◽  
Ripon Sarker ◽  
A. M. M. Taufiqur Rahman ◽  
S. M. Lutful Kabir ◽  
...  

Aim: The present study was carried out to determine load of total bacteria, Escherichia coli and Salmonella spp. in dairy farm and its environmental components. In addition, the antibiogram profile of the isolated bacteria having public health impact was also determined along with identification of virulence and resistance genes by polymerase chain reaction (PCR) under a one-health approach. Materials and Methods: A total of 240 samples of six types (cow dung - 15, milk - 10, milkers' hand wash - 10, soil - 10 water - 5, and vegetables - 10) were collected from four dairy farms. For enumeration, the samples were cultured onto plate count agar, eosin methylene blue, and xylose-lysine deoxycholate agar and the isolation and identification of the E. coli and Salmonella spp. were performed based on morphology, cultural, staining, and biochemical properties followed by PCR. The pathogenic strains of E. coli stx1, stx2, and rfbO157 were also identified through PCR. The isolates were subjected to antimicrobial susceptibility test against 12 commonly used antibiotics by disk diffusion method. Detection of antibiotic resistance genes ereA, tetA, tetB, and SHV were performed by PCR. Results: The mean total bacterial count, E. coli and Salmonella spp. count in the samples ranged from 4.54±0.05 to 8.65±0.06, 3.62±0.07 to 7.04±0.48, and 2.52±0.08 to 5.87±0.05 log colony-forming unit/g or ml, respectively. Out of 240 samples, 180 (75%) isolates of E. coli and 136 (56.67%) isolates of Salmonella spp. were recovered through cultural and molecular tests. Among the 180 E. coli isolates, 47 (26.11%) were found positive for the presence of all the three virulent genes, of which stx1 was the most prevalent (13.33%). Only three isolates were identified as enterohemorrhagic E. coli. Antibiotic sensitivity test revealed that both E. coli and Salmonella spp. were found highly resistant to azithromycin, tetracycline, erythromycin, oxytetracycline, and ertapenem and susceptible to gentamycin, ciprofloxacin, and imipenem. Among the four antibiotic resistance genes, the most observable was tetA (80.51-84.74%) in E. coli and Salmonella spp. and SHV genes were the lowest one (22.06-25%). Conclusion: Dairy farm and their environmental components carry antibiotic-resistant pathogenic E. coli and Salmonella spp. that are potential threat for human health which requires a one-health approach to combat the threat.


2019 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract Background Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries like Zambia. This study was undertaken to determine the resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from dressed broiler chickens purchased from open markets and supermarkets in Zambia.Results A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates was done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 different antibiotics and multiplex PCR was used to determine the presence of three target genes encoding for resistance: tetA, Sul1 and CTXM. AST results were entered and analyzed in WHONET 2018 software. A total of 189 E. coli and five Salmonella isolates were identified. Among the E. coli isolates, Tetracycline recorded the highest resistance of 79.4%, followed by Ampicillin 51.9%, Trimethoprim/Sulfamethoxazole 49.7%, Nalidixic Acid 24.3%, Chloramphenicol 16.4%, Cefotaxime 16.4%, Ciprofloxacin 10.1%, Colistin 7.4%, Amoxicillin/Clavulanic acid 6.9%, and Imipenem 1.1%. Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the isolates possessed at least one of the targeted resistance genes.Conclusion This study has demonstrated the presence of AMR E. coli and Salmonella on raw broiler chickens from both open markets and supermarkets. Such resistance is of public health concern and measures need to be put in place to regulate the use of these antimicrobials in poultry production.


2004 ◽  
Vol 47 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Elaine Regina Delicato ◽  
Jane Martha Graton Mikcha ◽  
Sueli Aparecida Fernandes ◽  
Jacinta Sanchez Pelayo

The purpose of this study was to analyse the profile of antimicrobial resistance among 21 strains of Salmonella isolated from patients with gastroenteritis symptom. It was observed that S. enteritidis was the serotype prevalent. These strains were sensitive to the majority of the antimicrobials tested, however, high resistance was observed in S. typhimurium and S. enterica subsp. enterica serotype 4,5,12:i:-. Surveillance and an efficient monitoring should be priority for the public health for the containment of antimicrobial resistance in foodborne infections.


Sign in / Sign up

Export Citation Format

Share Document