scholarly journals The influence of vehicle body roll angle on the motion stability and maneuverability of the vehicle

2017 ◽  
Vol 168 (1) ◽  
pp. 133-139
Author(s):  
Krzysztof PARCZEWSKI ◽  
Henryk WNĘK

The article discusses the impact of design solutions of vehicle suspensions into angles of body roll. It was shown which type of suspensions is better from this point of view. There were examined the dependence of the suspensions parameters on the vehicle body roll angle. The influence of camber angle on the force transmitted to the tire contact with the road surface was analysed. The lateral forces were measured on the test stand. There was tested dependency of lateral forces from the sideslip angle for different angles of camber. Was analysed change of lateral forces generated by camber angle on the vehicle which was made on a scale ~ 1:5 during tests carried out on the testing track. For this purpose, two tests have been selected: first one allowing the measurement in steady motion conditions, the second one with dynamic change of direction of vehicle motion. The graphs show the effect of camber angles on the controllability and stability of the vehicle motion.

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6940
Author(s):  
Marek Guzek ◽  
Zbigniew Lozia

All over the world, the vehicles introduced now into the market are usually provided with EDRs (Event Data Recorders), intended to measure and record the parameters that characterise the vehicle motion in the pre-, during-, and post-accident phases. The EDRs are to facilitate the description and reconstruction of possible road accidents. They are patterned on aircraft “black boxes” (flight recorders). Many of them have simplified design, disregarding three (of six) vector components that describe the motion of the vehicle body solid. In the paper presented, the authors used simulation models built by themselves to represent motor vehicle dynamics and the reconstruction of vehicle trajectory and velocities based on records obtained from two EDR types: “aircraft” one (EDR1) and “simplified” one (EDR2). Using a simulation method, they examined the impact of the said simplifications mentioned above on the quality of reconstruction of vehicle motion for four typical manoeuvres in road traffic. The calculation results obtained for input data adopted to rep-resent a medium-class passenger car have shown that the simplifications may cause considerable reconstruction errors. This particularly applies to the manoeuvres where significant changes took place in the roll and pitch angles of the vehicle body solid (to which the EDR was fixed) or where the changes were characterised by absence of symmetry in the parameters that describe the manoeuvre and by the constant sign of the vehicle body roll angles.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yaohua Guo ◽  
Bin Wang ◽  
Anton Tkachev ◽  
Nong Zhang

Rollover prevention is always one of the research hotspots in vehicle design. Active hydraulically interconnected suspension (HIS) is a promising technology to reduce vehicle body roll angle caused by different driving inputs and road conditions. This paper proposes a novel actuator of the active HIS system. The actuator consists of two cylinders, a ball screw, and only one motor. The actuator proposed can reduce the number of motors needed in the system. Meanwhile, forced vibration identification (FVI) is used to identify the transfer function of a half-car physical model and a Kalman state observer is applied to eliminate the influence of sensor noise. The FVI method can eliminate most model uncertainties and hidden variables. Aggressive and moderate optimal linear quadratic Gaussian (LQG) methods are implemented to control the motion of the vehicle body based on the identified transfer function of the physical model. The performance of an active HIS system with an aggressive and moderate LQG controller is compared with that of a passive HIS system. The effectiveness of the LQG controller is validated by simulation and experimental results. Also, the obtained results show that the stabilization speed of the active HIS system is 20% faster than that of the passive HIS system and the roll angle can be reduced up to 55% than that of the passive HIS system.


Author(s):  
David Cimba ◽  
Kyle Gilbert ◽  
John Wagner

Sport utility and light-duty commercial vehicles exhibit a higher propensity for rollover during aggressive driving maneuvers, emergency scenarios, and degraded environmental conditions. A variety of strategies have been proposed to reduce vehicle body roll including active suspensions, comprehensive yaw stability systems, and active torsion bars. The active torsion bar systems have recently gained popularity due to their cost effective design and adaptability to existing chassis systems. However, the development of new control algorithms, design of subsystem components, and the evaluation of parameter sensitivity via testing a full scale vehicle is not always practical due to cost and safety concerns. Thus, a modular simulation tool and bench top testing environment is required to facilitate design and performance studies. In this paper, a series of mathematical models will be introduced to describe the vehicle dynamics and the roll prevention system. Representative numerical results are discussed to investigate a vehicle’s transient response with and without an active torsion bar system, as well as the impact of torsion bar and hydraulic component design parameters. Finally, a hardware in-the-loop test environment will be presented.


1999 ◽  
Vol 27 (4) ◽  
pp. 227-249 ◽  
Author(s):  
Y. Zhang ◽  
C. Hazard

Abstract The effects of tire properties and their interaction with the ground and the suspension system on vehicle dynamic behavior was studied using a newly developed finite element analysis method. This analysis method used the explicit nonlinear dynamic code LS-DYNA as a solver and contained finite element models for both the vehicle body structure and subsystems like chassis/suspension. The case presented in this paper is curb impact. Different tire properties such as tire/wheel assembly mass, tire stiffness, tire inflation pressure, tire size, etc., as well as different curb heights, were used with the same vehicle body and suspension system. Simulation results of the impact forces, wheel center jumps, and vehicle body roll/pitch angles at impact are compared for different parameters of the tires and the curb. The analyses presented in this paper provided an accurate and practical method for tire and vehicle dynamics analysis.


2013 ◽  
Vol 470 ◽  
pp. 563-566
Author(s):  
Zi Xue Du ◽  
Zhi Hua Liang ◽  
Xiao Xia Wen

The curve through performance of straddle type monorail vehicle include performance-oriented, preventing derailment stability, preventing vehicle overturning stability, tire wear performance, which are evaluated by oriented torque, the minimum vertical force of horizontal wheels, vehicle body roll angle, overturning coefficient, the sum of tire forces scalar. With the virtual simulation model in ADAMS, this paper analyzes the impact of the monorail vehicle suspension stiffness parameters on the evaluation indexes by sensitivity analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Binshuang Zheng ◽  
Xiaoming Huang ◽  
Runmin Zhao ◽  
Zhengqiang Hong ◽  
Jiaying Chen ◽  
...  

To fully consider the impact of asphalt pavement rut on steering stability of autonomous vehicles, the sensitivity of various indicators of rut shape to vehicle stability was comprehensively measured, and pavement rut control standards based on comfort demands of autonomous vehicles were investigated. Firstly, a steering control system for autonomous vehicles was built in Simulink according to fuzzy control theory. Then, through orthogonal experiment design theory, different rut shape indicators are simulated in CarSim. The influence sensitivity of different rut shape indicators and the allowable rut range considering driving comfort were studied. The results show that both the rut depth and the rut side angle have a greater effect on the vehicle vertical acceleration within a certain parameter range. The maximum roll angle of vehicle body is mainly affected by the rut depth, and the rut width has a small effect on the vehicle driving stability. Meanwhile, considering human comfort, the rut side angle should not be greater than 1° when the rut depth reaches 2 cm. For autonomous driving, the rut depth should not exceed 2.5 cm. When the rut depth exceeds 2.5 cm, the vehicle body roll angle caused by the rut exceeds the inertial centrifugal force of the vehicle itself, which has a significant impact on the passenger comfort and safety.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Lizhen Gao ◽  
Yingying Zhang ◽  
Xiaoming Zhang ◽  
Yuyang Xue

In the course of the guidance transformation of the rotating projectile, the accurate acquisition of the roll angle and roll angle rate is very important to the attitude determination and guidance control of the rotating projectile. However, due to the impact of high rotation and high overload of projectile, MEMS gyros have problems such as limited range, saturation, overload, and even performance degradation, which make the roll angle rate unable to be output normally. At the same time, because the MEMS gyro estimation of roll angle is in the form of angular rate integral, the roll angle cannot be estimated normally if the roll angle rate cannot be accurately obtained. In order to solve this problem, a real-time estimation of projectile roll angle and roll rate based on geomagnetic information under high dynamic and high overload conditions is presented. Firstly, according to the motion characteristics of the rotating projectile, the motion model of the projectile is established, and the roll angle and roll angle rate of the projectile are estimated by Kalman filtering algorithm under the conditions of high axial rotation and high overload. Considering the high dynamic characteristics of the rotating projectile, based on the Kalman filter, the algorithm of the forgetting filter with the forgetting factor is further adopted to estimate the roll angle and roll angle rate, so as to reduce the error caused by the estimation delay in the process of high-speed dynamic change. Simulation data and semiphysical test results show that the accuracy of roll angle estimated by this method reaches about 2° in semiphysical test, which is one time higher than that calculated by the system. In the semiphysical experiment, the accuracy of the estimated roll rotation rate reaches 5 °/s, which is more than 6 times higher than that obtained by direct derivation. In the high dynamic stage, compared with the pure Kalman filter, the accuracy of roll angle with forgetting factor estimation is improved by an order of magnitude, and the accuracy of roll angle rate is improved by 4 times, which meets the desired accuracy of rotating projectile.


Author(s):  
Piotr Fundowicz ◽  
Hubert Sar ◽  
Mateusz Brukalski

Computer simulation seems to be one of the cheapest and relatively fast methods of investigating vehicle motion. Thereby, it may be important in the case of calculations for the reconstruction of traffic incidents. In particular, that may be important to answer the following question: How wheels' normal reaction forces differ during the cornering of a vehicle? In this article, the authors presented how the normal reaction forces vary in the case of roll motion of a vehicle body. Suitable mathematical equations are presented. Furthermore, the measurements of the height of the centre of gravity were performed, which was necessary to obtain the normal reaction forces while vehicle body rolls. The authors decided to apply dimensionless coefficients, which represented the properties of a front and rear suspension. Additionally, dimensionless parameters were applied to consider the impact of asymmetrical distribution of vehicle load on normal reaction forces of wheels on a road surface.


Author(s):  
DB Heyner ◽  
G Piazza ◽  
E Beeh ◽  
G Seidel ◽  
HE Friedrich ◽  
...  

A promising approach for the development of sustainable and resource-saving alternatives to conventional material solutions in vehicle structures is the use of renewable raw materials. One group of materials that has particular potential for this application is wood. The specific material properties of wood in the longitudinal fiber direction are comparable to typical construction materials such as steel or aluminum. Due to its comparatively low density, there is a very high lightweight construction potential especially for bending load cases. Structural components of the vehicle body are exposed to very high mechanical loads in the case of crash impact. Depending on the component under consideration, energy has to be absorbed and the structural integrity of the body has to be ensured in order to protect the occupants. The use of natural materials such as wood poses particular challenges for such applications. The material characteristics of wood are dispersed, and depend on environmental factors such as humidity. The aim of the following considerations was to develop a material system to ensure the functional reliability of the component. The test boundary conditions for validation also play a key role in this context. The potential of wood–steel hybrid design based on laminated veneer lumber and steel was investigated for use in a component subjected to crash loads such as the door impact beam. The chosen solution involves a separation of functions. A laminated veneer lumber-based beam was hybridized with a steel strip on the tension side. The steel strip was designed to compensate the comparatively low elongation at fracture of the wood and to ensure the integrity of the beam. The wooden component was designed for high energy absorption due to delamination and controlled failure during the impact, while maintaining the surface moment of inertia, i.e. the bending stiffness of the entire component. This approach was chosen to ensure the functional safety of the component, avoid sudden component failure and utilize the high potential of both materials. The tests carried out provided initial functional proof of the chosen solution. The hybridization achieved significantly higher deformations without sudden failure of the beam. In addition, bending capabilities were increased significantly compared to a beam without hybridization. In comparison with a state-of-the-art steel beam, the hybrid beam was not able to achieve the maximum deformation and the target weight of the hybrid beam. Further optimization of the hybrid beam is therefore necessary.


2021 ◽  
Author(s):  
Mojtaba Moradi ◽  
Michael R Konopczynski

Abstract Matrix acidizing is a common but complex stimulation treatment that could significantly improve production/injection rate, particularly in carbonate reservoirs. However, the desired improvement in all zones of the well by such operation may not be achieved due to existing and/or developing reservoir heterogeneity. This paper describes how a new flow control device (FCD) previously used to control water injection in long horizontal wells can also be used to improve the conformance of acid stimulation in carbonate reservoirs. Acid stimulation of a carbonate reservoir is a positive feedback process. Acid preferentially takes the least resistant path, an area with higher permeability or low skin. Once acid reacts with the formation, the injectivity in that zone increases, resulting in further preferential injection in the stimulated zone. Over-treating a high permeability zone results in poor distribution of acid to low permeability zones. Mechanical, chemical or foam diversions have been used to improve stimulation conformance along the wellbore, however, they may fail in carbonate reservoirs with natural fractures where fracture injectivity dominates the stimulation process. A new FCD has been developed to autonomously control flow and provide mechanical diversion during matrix stimulation. Once a predefined upper limit flowrate is reached at a zone, the valve autonomously closes. This eliminates the impact of thief zone on acid injection conformance and maintains a prescribed acid distribution. Like other FCDs, this device is installed in several compartments in the wells. The device has two operating conditions, one, as a passive outflow control valve, and two, as a barrier when the flow rate through the valve exceeds a designed limit, analogous to an electrical circuit breaker. Once a zone has been sufficiently stimulated by the acid and the injection rate in that zone exceeds the device trip point, the device in that zone closes and restricts further stimulation. Acid can then flow to and stimulate other zones This process can be repeated later in well life to re-stimulate zones. This performance enables the operators to minimise the impacts of high permeability zones on the acid conformance and to autonomously react to a dynamic change in reservoirs properties, specifically the growth of wormholes. The device can be installed as part of lower completions in both injection and production wells. It can be retrofitted in existing completions or be used in a retrievable completion. This technology allows repeat stimulation of carbonate reservoirs, providing mechanical diversion without the need for coiled tubing or other complex intervention. This paper will briefly present an overview of the device performance, flow loop testing and some results from numerical modelling. The paper also discusses the completion design workflow in carbonates reservoirs.


Sign in / Sign up

Export Citation Format

Share Document