scholarly journals Distributed Manufacturing of Open-Source Medical Hardware for Pandemics

Author(s):  
Joshua Pearce

Distributed digital manufacturing offers a solution to medical supply and technology shortages during pandemics. To prepare for the next pandemic, this study reviews the state-of-the-art for open hardware designs needed in a COVID-19-like pandemic. It evaluates the readiness of the top twenty technologies requested by the Government of India. The results show that the majority of the actual medical products have had some open source development, however, only 15% of the supporting technologies that make the open source device possible are freely available. The results show there is still considerable work needed to provide open source paths for the development of all the medical hardware needed during pandemics. Five core areas of future work are discussed that include: i) technical development of a wide-range of open source solutions for all medical supplies and devices, ii) policies that protect the productivity of laboratories, makerspaces and fabrication facilities during a pandemic, as well as iii) streamlining the regulatory process, iv) developing Good-Samaritan laws to protect makers and designers of open medical hardware, as well as to compel those with knowledge that will save lives to share it, and v) requiring all citizen-funded research to be released with free and open source licenses.

2020 ◽  
Vol 4 (2) ◽  
pp. 49 ◽  
Author(s):  
Joshua M. Pearce

Distributed digital manufacturing offers a solution to medical supply and technology shortages during pandemics. To prepare for the next pandemic, this study reviews the state-of-the-art of open hardware designs needed in a COVID-19-like pandemic. It evaluates the readiness of the top twenty technologies requested by the Government of India. The results show that the majority of the actual medical products have some open source development, however, only 15% of the supporting technologies required to produce them are freely available. The results show there is still considerable research needed to provide open source paths for the development of all the medical hardware needed during pandemics. Five core areas of future research are discussed, which include (i) technical development of a wide-range of open source solutions for all medical supplies and devices, (ii) policies that protect the productivity of laboratories, makerspaces, and fabrication facilities during a pandemic, as well as (iii) streamlining the regulatory process, (iv) developing Good-Samaritan laws to protect makers and designers of open medical hardware, as well as to compel those with knowledge that will save lives to share it, and (v) requiring all citizen-funded research to be released with free and open source licenses.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 627 ◽  
Author(s):  
Eduardo Viciana ◽  
Alfredo Alcayde ◽  
Francisco Montoya ◽  
Raul Baños ◽  
Francisco Arrabal-Campos ◽  
...  

An important challenge for our society is the transformation of traditional power systems to a decentralized model based on renewable energy sources. In this new scenario, advanced devices are needed for real-time monitoring and control of the energy flow and power quality (PQ). Ideally, the data collected by Internet of Thing (IoT) sensors should be shared to central cloud systems for online and off-line analysis. In this paper openZmeter (oZm) is presented as an advanced low-cost and open-source hardware device for high-precision energy and power quality measurement in low-voltage power systems. An analog front end (AFE) stage is designed and developed for the acquisition, conditioning, and processing of power signals. This AFE can be stacked on available quadcore embedded ARM boards. The proposed hardware is capable of adapting voltage signals up to 800 V AC/DC and currents up to thousands of amperes using different probes. The oZm device is described as a fully autonomous open-source system for the computation and visualization of PQ events and consumed/generated energy, along with full details of its hardware implementation. It also has the ability to send data to central cloud management systems. Given the small size of the hardware design and considering that it allows measurements under a wide range of operating conditions, oZm can be used both as bulk metering or as metering/submetering device for individual appliances. The design is released as open hardware and therefore is presented to the community as a powerful tool for general usage.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 49-57
Author(s):  
David Hananel ◽  
Dan Silverglate ◽  
Dan Burke ◽  
Benjamin Riggs ◽  
Jack Norfleet ◽  
...  

ABSTRACT Introduction Current thinking in healthcare education stipulates a holistic approach with a focus on patient management, bringing together technical skills, decision-making, and team performance. In parallel, training opportunities with actual patients have diminished, and the number of different interventions to master has increased. Training on simulators has become broadly accepted; however, requirements for such training devices have outpaced the development of new simulators. The Department of Defense (DoD) targeted this gap with a development challenge. This article introduces the Advanced Modular Manikin (AMM) platform and describes the path followed to address the challenge. Materials and Methods Under Contract # W81XWH-14-C-0101, our interdisciplinary team of healthcare providers, educators, engineers, and scientists, together with partners in industry and the government collaborated to establish a set of comprehensive requirements and develop an overarching system architecture and specifications to meet healthcare simulation needs. In order to instantiate the architecture and investigate usability of the platform, a demonstration modular manikin was created that incorporated physical and digital peripherals. Results The system architecture and corresponding data models have been completed and published as open source. A developer’s tool kit has been created, including instructional materials and required hardware and software for interested parties to develop AMM-compatible modules. A reference manikin was created based on the platform specifications and successfully supported a usability study that was performed by the American College of Surgeons, Education Division at the Naval Medical Center San Diego. Conclusions The formal release of a functional modular, interoperable open-source healthcare simulation platform is complete. Next steps involve a strategy for maintaining the open standards and verification of AMM-compatibility for modules. Increasing awareness of this powerful tool and prioritization of module-development to address the wide range of healthcare education needs could lead to a renaissance in military and civilian healthcare simulation-based training.


Author(s):  
Craig T. Russell ◽  
Michael Shaw

Since the first practical super-resolution structured illumination fluorescence microscopes (SIM) were demonstrated more than two decades ago, the method has become increasingly popular for a wide range of bioimaging applications. The high cost and relative inflexibility of commercial systems, coupled with the conceptual simplicity of the approach and the desire to exploit and customize existing hardware, have led to the development of a large number of home-built systems. Several detailed hardware designs are available in the scientific literature, complemented by open-source software tools for SIM image validation and reconstruction. However, there remains a lack of simple open-source software to control these systems and manage the synchronization between hardware components, which is critical for effective SIM imaging. This article describes a new suite of software tools based on the popular Micro-Manager package, which enable the keen microscopist to develop and run a SIM system. We use the software to control two custom-built, high-speed, spatial light modulator-based SIM systems, evaluating their performance by imaging a range of fluorescent samples. By simplifying the process of SIM hardware development, we aim to support wider adoption of the technique. This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 1)’.


2021 ◽  
Author(s):  
Craig T. Russell ◽  
Michael Shaw

SummarySince the first practical super-resolution structured illumination fluorescence microscopes (SIM) were demonstrated more than two decades ago the method has become increasingly popular for a wide range of bioimaging applications. The high cost and relative inflexibility of commercial systems, coupled with the conceptual simplicity of the approach and the desire to exploit and customise existing hardware, have led to the development of a large number of home-built systems. Several detailed hardware designs are available in the scientific literature, complemented by open-source software tools for SIM image validation and reconstruction. However, there remains a lack of simple open-source software to control these systems and manage the synchronization between hardware components, which is critical for effective SIM imaging. This article describes a new suite of software tools based on the popular Micro-Manager package, which enable the keen microscopist to develop and run a SIM system. We use the software to control two custom-built, high-speed, spatial light modulator-based SIM systems, evaluating their performance by imaging a range of fluorescent samples. By simplifying the process of SIM hardware development, we aim to support wider adoption of the technique.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1256 ◽  
Author(s):  
Pandey ◽  
Vora

A wide range of medical devices have significant electronic components. Compared to open-source medical software, open (and open-source) electronic hardware has been less published in peer-reviewed literature. In this review, we explore the developments, significance, and advantages of using open platform electronic hardware for medical devices. Open hardware electronics platforms offer not just shorter development times, reduced costs, and customization; they also offer a key potential advantage which current commercial medical devices lack—seamless data sharing for machine learning and artificial intelligence. We explore how various electronic platforms such as microcontrollers, single board computers, field programmable gate arrays, development boards, and integrated circuits have been used by researchers to design medical devices. Researchers interested in designing low cost, customizable, and innovative medical devices can find references to various easily available electronic components as well as design methodologies to integrate those components for a successful design.


2020 ◽  
Vol 1 (10(79)) ◽  
pp. 12-18
Author(s):  
G. Bubyreva

The existing legislation determines the education as "an integral and focused process of teaching and upbringing, which represents a socially important value and shall be implemented so as to meet the interests of the individual, the family, the society and the state". However, even in this part, the meaning of the notion ‘socially significant benefit is not specified and allows for a wide range of interpretation [2]. Yet the more inconcrete is the answer to the question – "who and how should determine the interests of the individual, the family and even the state?" The national doctrine of education in the Russian Federation, which determined the goals of teaching and upbringing, the ways to attain them by means of the state policy regulating the field of education, the target achievements of the development of the educational system for the period up to 2025, approved by the Decree of the Government of the Russian Federation of October 4, 2000 #751, was abrogated by the Decree of the Government of the Russian Federation of March 29, 2014 #245 [7]. The new doctrine has not been developed so far. The RAE Academician A.B. Khutorsky believes that the absence of the national doctrine of education presents a threat to national security and a violation of the right of citizens to quality education. Accordingly, the teacher has to solve the problem of achieving the harmony of interests of the individual, the family, the society and the government on their own, which, however, judging by the officially published results, is the task that exceeds the abilities of the participants of the educational process.  The particular concern about the results of the patriotic upbringing served as a basis for the legislative initiative of the RF President V. V. Putin, who introduced the project of an amendment to the Law of RF "About Education of the Russian Federation" to the State Duma in 2020, regarding the quality of patriotic upbringing [3]. Patriotism, considered by the President of RF V. V. Putin as the only possible idea to unite the nation is "THE FEELING OF LOVE OF THE MOTHERLAND" and the readiness for every sacrifice and heroic deed for the sake of the interests of your Motherland. However, the practicing educators experience shortfalls in efficient methodologies of patriotic upbringing, which should let them bring up citizens, loving their Motherland more than themselves. The article is dedicated to solution to this problem based on the Value-sense paradigm of upbringing educational dynasty of the Kurbatovs [15].


2020 ◽  
Vol 3 (1) ◽  
pp. 10-21
Author(s):  
Muhammad Adam

Indonesian health insurance (BPJS Kesehatan) has been facing financial deficit and during the coverage of its deficit, media frequently use many medical terms metaphor to describe the financial condition of BPJS Kesehatan. This study aims to examine the medical terms metaphor used to describe the financial deficit of BPJS Kesehatan to further identify the entailments and to pin point what is the cause of sickness and what could cure the sickness. Qualitative method is used in this study with conceptual metaphor theory (Lakoff and Johnson, 1980) as the conceptual framework. There 10 headlines from various online media outlet that are collected as the source of the data. The study examines the particular terms which described BPJS Kesehatan as a sick patient and further analysis is conducted to identify the closest entailments of metaphor, which are to identify who will be the doctor and what cause its sickness. The results shows that the particular conditions  as  metaphor used to describe the financial condition of BPJS Kesehatan is dying (sekarat), critical (kritis), swell (bengkak), and wound (luka).  From the analysis of entailments, the doctor is the government equipped with medical supplies and procedures to cure the patient which is the financial subsidy and the second entailment is the cause of the sickness which is the lack of awareness from the member to pay the premium regularly on time.


Author(s):  
Ilana Seager ◽  
Douglas S. Mennin ◽  
Amelia Aldao

Generalized anxiety disorder (GAD) is a debilitating condition characterized by excessive, pervasive, uncontrollable, and paralyzing worries about a wide range of future situations. Individuals with this condition frequently find themselves stuck in worry and tension cycles in futile attempts at reducing uncertainty and increasing control. GAD has been associated with substantial impairments in functioning and reduced quality of life. GAD remains poorly understood, and the long-term efficacy and end-state functioning resulting from treatment are weaker compared to other anxiety disorders. Some treatments (e.g., emotion regulation therapy, acceptance-based behavioral therapy) have improved efficacy, partly by targeting emotional dysfunction. Basic psychopathology research has focused on identifying the role of negative affect in GAD, so little is known about how positive affect is experienced and regulated in this disorder. This is particularly important in light of the overlap of this condition with major depressive disorder, which is characterized by low or suppressed positive emotion. Developing such an understanding is essential to further improve the efficacy of emotion-based treatments. This chapter reviews current and future directions in the study of positive affect in GAD. The chapter reviews the nascent research on positive affect and GAD, then illustrates dimensions of future work.


Slavic Review ◽  
1969 ◽  
Vol 28 (2) ◽  
pp. 276-288 ◽  
Author(s):  
Benjamin M. Weissman

In March 1921 Lenin predicted, “If there is a harvest, everybody will hunger a little and the government will be saved. Otherwise, since we cannot take anything from people who do not have the means to satisfy their own hunger, the government will perish.“ By early summer, Russia was in the grip of one of the worst famines in its history. Lenin's gloomy forecast, however, was never put to the test. At almost the last moment, substantial help in the form of food, clothing, and medical supplies arrived from a most unexpected source —U.S. Secretary of Commerce Herbert Hoover.Hoover undertook the relief of Soviet Russia not as an official representative of the United States government but as the head of a private agency —the American Relief Administration (A.R.A.).


Sign in / Sign up

Export Citation Format

Share Document