scholarly journals Nanotechnology as a Versatile Tool for 19F-MRI Agent’s Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles

Author(s):  
Joice Maria Joseph ◽  
Maria Rosa Gigliobianco ◽  
Bita Mahdavi Firouzabadi ◽  
Roberta Censi ◽  
Piera Di Martino

Simultaneously being a non-radiative and non-invasive technique makes magnetic resonance imaging (MRI) one of the highly sought imaging techniques for the early diagnosis and treatment of diseases. Despite more than four decades of research on finding a suitable imaging agent from fluorine for clinical applications, it still lingers as a challenge to get the regulatory approval compared to its hydrogen counterpart. The pertinent hurdle is the simultaneous intrinsic hydrophobicity and lipophobicity of fluorine and its derivatives that make them insoluble in any liquids, strongly limiting their application in areas such as targeted delivery. A blossoming technique to circumvent the unfavorable physicochemical characteristics of perfluorocarbon compounds (PFCs) and guarantee a high local concentration of fluorine in the desired body part is to encapsulate them in nanosystems. In this review, we will be emphasizing different types of nanocarrier systems studied to encapsulate various PFCs and fluorinated compounds, headway to be applied as a contrast agent (CA) in fluorine-19 MRI (19F MRI). We would also scrutinize the different types of PFCs and their specific applications and limitations concerning the nanoparticle (NP) system used to encapsulate them studied over the last decade. A critical evaluation for future opportunities would be speculated.

Author(s):  
Randi Veiteberg KVELLESTAD ◽  
Ingeborg STANA ◽  
VATN Gunhild

Teamwork involves different types of interactions—specifically cooperation andcollaboration—that are necessary in education and many other professions. The differencesbetween cooperation and collaboration underline the teacher’s role in influencing groupdynamics, which represent both a foundation for professional design education and aprequalification for students’ competences as teachers and for critical evaluation. As a testcase, we focused on the Working Together action-research project in design education forspecialised teacher training in design, arts, and crafts at the Oslo Metropolitan University,which included three student groups in the material areas of drawing, ceramics, and textiles.The project developed the participants’ patience, manual skills, creativity, and abilities,which are important personal qualities for design education and innovation and representcornerstones in almost every design literacy and business environment. The hope is thatstudents will transform these competences to teaching pupils of all ages in their futurecareers.


Author(s):  
Siyamol Chirakkarottu ◽  
Sheena Mathew

Background: Medical imaging encloses different imaging techniques and processes to image the human body for medical diagnostic and treatment purposes. Hence it plays an important role to improve public health. The technological development in biomedical imaging specifically in X-ray, Computed Tomography (CT), nuclear ultrasound including Positron Emission Tomography (PET), optical and Magnetic Resonance Imaging (MRI) can provide valuable information unique to a person. Objective: In health care applications, the images are needed to be exchanged mostly over wireless medium. The diagnostic images with confidential information of a patient need to be protected from unauthorized access during transmission. In this paper, a novel encryption method is proposed to improve the security and integrity of medical images. Methods: Chaotic map along with DNA cryptography is used for encryption. The proposed method describes a two phase encryption of medical images. Results: Performance of the proposed method is also tested by various analysis metrics. Robustness of the method against different noises and attacks is analyzed. Conclusion: The results show that the method is efficient and well suitable to medical images.


Author(s):  
Aaishwarya Sanjay Bajaj ◽  
Usha Chouhan

Background: This paper endeavors to identify an expedient approach for the detection of the brain tumor in MRI images. The detection of tumor is based on i) review of the machine learning approach for the identification of brain tumor and ii) review of a suitable approach for brain tumor detection. Discussion: This review focuses on different imaging techniques such as X-rays, PET, CT- Scan, and MRI. This survey identifies a different approach with better accuracy for tumor detection. This further includes the image processing method. In most applications, machine learning shows better performance than manual segmentation of the brain tumors from MRI images as it is a difficult and time-consuming task. For fast and better computational results, radiology used a different approach with MRI, CT-scan, X-ray, and PET. Furthermore, summarizing the literature, this paper also provides a critical evaluation of the surveyed literature which reveals new facets of research. Conclusion: The problem faced by the researchers during brain tumor detection techniques and machine learning applications for clinical settings have also been discussed.


Author(s):  
Joanna Podgorska ◽  
Agnieszka Anysz-Grodzicka ◽  
Andrzej Cieszanowski

Background: Fat can be identified in numerous liver lesions, and usually is not a specific finding. Distinguishing between different kinds of fatty deposits is an important part of differential diagnosis. Magnetic Resonance Imaging (MRI) is superior to other imaging techniques because it allows distinguishing intracellular from macroscopic fat. Discussion: Intracellular lipid may be found in focal hepatic steatosis, hepatic adenoma, hepatocellular carcinoma and, less commonly, in focal nodular hyperplasia as well as regenerative and dysplastic nodules. Macroscopic fat is seen in angiomyolipoma, lipoma, metastases from fatcontaining neoplasms, primary or metastatic liposarcoma, hydatid cyst, pseudolipoma of the Glisson capsule, pericaval fat collection, lipopeliosis, hepatic teratoma, focal hepatic extramedullary haematopoiesis and adrenal rest tumour. Conclusion: Liver nodules should be characterised with regard to underlying liver condition, MRI characteristics and contrast enhancement pattern, including hepatobiliary phase. In many cases, identification of fatty content may help narrowing the differential diagnosis.


2020 ◽  
Vol 10 (5) ◽  
pp. 577-590
Author(s):  
Jai B. Sharma ◽  
Shailendra Bhatt ◽  
Asmita Sharma ◽  
Manish Kumar

Background: The potential use of nanocarriers is being explored rapidly for the targeted delivery of anticancer agents. Curcumin is a natural polyphenolic compound obtained from rhizomes of turmeric, belongs to family Zingiberaceae. It possesses chemopreventive and chemotherapeutic activity with low toxicity in almost all types of cancer. The low solubility and bioavailability of curcumin make it unable to use for the clinical purpose. The necessity of an effective strategy to overcome the limitations of curcumin is responsible for the development of its nanocarriers. Objective: This study is aimed to review the role of curcumin nanocarriers for the treatment of cancer with special emphasis on cellular uptake and in vitro cytotoxicity studies. In addition to this, the effect of various ligand conjugated curcumin nanoparticles on different types of cancer was also studied. Methods: A systematic review was conducted by extensively surfing the PubMed, science direct and other portals to get the latest update on recent development in nanocarriers of curcumin. Results: The current data from recent studies showed that nanocarriers of curcumin resulted in the targeted delivery, higher efficacy, enhanced bioavailability and lower toxicity. The curcumin nanoparticles showed significant inhibitory effects on cancer cells as compared to free curcumin. Conclusion: It can be concluded that bioavailability of curcumin and its cytotoxic effect to cancer cells can be enhanced by the development of curcumin based nanocarriers and it was found to be a potential drug delivery technique for the treatment of cancer.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 734
Author(s):  
Xuhua Xia

The design of Pfizer/BioNTech and Moderna mRNA vaccines involves many different types of optimizations. Proper optimization of vaccine mRNA can reduce dosage required for each injection leading to more efficient immunization programs. The mRNA components of the vaccine need to have a 5’-UTR to load ribosomes efficiently onto the mRNA for translation initiation, optimized codon usage for efficient translation elongation, and optimal stop codon for efficient translation termination. Both 5’-UTR and the downstream 3’-UTR should be optimized for mRNA stability. The replacement of uridine by N1-methylpseudourinine () complicates some of these optimization processes because is more versatile in wobbling than U. Different optimizations can conflict with each other, and compromises would need to be made. I highlight the similarities and differences between Pfizer/BioNTech and Moderna mRNA vaccines and discuss the advantage and disadvantage of each to facilitate future vaccine improvement. In particular, I point out a few optimizations in the design of the two mRNA vaccines that have not been performed properly.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 354
Author(s):  
Walid Mnasri ◽  
Mahsa Parvizian ◽  
Souad Ammar-Merah

Current biomedical imaging techniques are crucial for the diagnosis of various diseases. Each imaging technique uses specific probes that, although each one has its own merits, do not encompass all the functionalities required for comprehensive imaging (sensitivity, non-invasiveness, etc.). Bimodal imaging methods are therefore rapidly becoming an important topic in advanced healthcare. This bimodality can be achieved by successive image acquisitions involving different and independent probes, one for each mode, with the risk of artifacts. It can be also achieved simultaneously by using a single probe combining a complete set of physical and chemical characteristics, in order to record complementary views of the same biological object at the same time. In this scenario, and focusing on bimodal magnetic resonance imaging (MRI) and optical imaging (OI), probes can be engineered by the attachment, more or less covalently, of a contrast agent (CA) to an organic or inorganic dye, or by designing single objects containing both the optical emitter and MRI-active dipole. If in the first type of system, there is frequent concern that at some point the dye may dissociate from the magnetic dipole, it may not in the second type. This review aims to present a summary of current activity relating to this kind of dual probes, with a special emphasis on lanthanide-based luminescent nano-objects.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Khuram Shahzad Ahmad ◽  
Muntaha Talat ◽  
Shaan Bibi Jaffri ◽  
Neelofer Shaheen

AbstractConventional treatment modes like chemotherapy, thermal and radiations aimed at cancerous cells eradication are marked by destruction pointing the employment of nanomaterials as sustainable and auspicious materials for saving human lives. Cancer has been deemed as the second leading cause of death on a global scale. Nanomaterials employment in cancer treatment is based on the utilization of their inherent physicochemical characteristics in addition to their modification for using as nano-carriers and nano-vehicles eluted with anti-cancer drugs. Current work has reviewed the significant role of different types of nanomaterials in cancer therapeutics and diagnostics in a systematic way. Compilation of review has been done by analyzing voluminous investigations employing ERIC, MEDLINE, NHS Evidence and Web of Science databases. Search engines used were Google scholar, Jstore and PubMed. Current review is suggestive of the remarkable performance of nanomaterials making them candidates for cancer treatment for substitution of destructive treatment modes through investigation of their physicochemical characteristics, utilization outputs and long term impacts in patients.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3874
Author(s):  
Dominika Veselinyová ◽  
Jana Mašlanková ◽  
Katarina Kalinová ◽  
Helena Mičková ◽  
Mária Mareková ◽  
...  

We are experiencing rapid progress in all types of imaging techniques used in the detection of various numbers and types of mutation. In situ hybridization (ISH) is the primary technique for the discovery of mutation agents, which are presented in a variety of cells. The ability of DNA to complementary bind is one of the main principles in every method used in ISH. From the first use of in situ techniques, scientists paid attention to the improvement of the probe design and detection, to enhance the fluorescent signal intensity and inhibition of cross-hybrid presence. This article discusses the individual types and modifications, and is focused on explaining the principles and limitations of ISH division on different types of probes. The article describes a design of probes for individual types of in situ hybridization (ISH), as well as the gradual combination of several laboratory procedures to achieve the highest possible sensitivity and to prevent undesirable events accompanying hybridization. The article also informs about applications of the methodology, in practice and in research, to detect cell to cell communication and principles of gene silencing, process of oncogenesis, and many other unknown processes taking place in organisms at the DNA/RNA level.


2011 ◽  
Vol 69 (1) ◽  
pp. 130-138 ◽  
Author(s):  
Celi Santos Andrade ◽  
Claudia da Costa Leite

Malformations of cortical development (MCD) result from disruptions in the complex process of the human brain cortex formation and are highly associated to severe epilepsy, neurodevelopmental delay and motor dysfunction. Nowadays, magnetic resonance imaging (MRI) is the cornerstone of the work-up of patients with epilepsy and modern advanced imaging techniques have improved not only our ability to detect and characterize cortical malformations, but also in identifying associated functional abnormalities that are far beyond the structural visualized lesions. Herein, we address the most currently used classifications of MCD and make a concise review of the embryological process of cortical development. Our main goal is to summarize recent advances and new trends in diagnostic imaging techniques concerning MCD. Thereafter, follows a brief discussion of specific disorders and their radiological features.


Sign in / Sign up

Export Citation Format

Share Document