scholarly journals Ion transport in a charged conical nanopore filled with viscoelastic fluids: ion current rectification

Author(s):  
Mohit Trivedi ◽  
Neelkanth Nirmalkar

Abstract The ionic current rectification (ICR) is a non-linear current-voltage response upon switching the polarity of the potential across nanopore, similar to the I-V response in the semiconductor diode. The ICR phenomenon finds several potential applications in micro/nano-fluidics (e.g., Bio-sensors and Lab-on-Chip applications). From a biological application viewpoint, most biological fluids (e.g., blood, saliva, mucus, etc.) exhibit non-Newtonian visco-elastic behavior; their rheological properties differ from Newtonian fluids. Therefore, the resultant flow-field should show an additional dependence on the rheological material properties of viscoelastic fluids such as fluid relaxation time (λ) and fluid extensibility (ε). Despite numerous potential applications, the comprehensive investigation of the viscoelastic behavior of the fluid on ionic concentration profile and ICR phenomena has not been attempted. ICR phenomena occur when the length scale and Debye layer thickness approaches of the same order. Therefore, this work extensively investigates the effect of viscoelasticity on the flow and ionic mass transfer along with the ICR phenomena in a single conical nanopore. The Poisson-Nernst-Planck (P-N-P) model coupled with momentum equations have been solved, for a wide range of conditions Deborah number, 1 ≤ De ≤ 100, Debye length parameter, 1 ≤ κRt ≤ 50, fluid extensibility parameter, 0.05 ≤ ε ≤ 0.25, applied electric potential, −40 ≤V ≤ 40, and surface charge density σ = −10 and −50. Four distinct novel characteristics of electro-osmotic flow (EOF) in a conical nanopore have been investigated here, namely (1) detailed structure of flow field and velocity distribution in viscoelastic fluids (2) influence of Deborah number and fluid extensibility parameter on ionic current rectification (ICR) (3) volumetric flow rate calculation as a function of Deborah number and fluid extensibility parameter (4) effect of viscoelastic parameters on concentration distribution of ions in the nanopore. At high applied voltage, both the extensibility parameter and Deborah number facilitate the ICR phenomena. In addition, the ICR phenomena are observed to be more pronounced at low values of κRt than the high values of κRt . This effect is due to the overlapping of the electric double layer at low values of κRt.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1566
Author(s):  
Oliver J. Pemble ◽  
Maria Bardosova ◽  
Ian M. Povey ◽  
Martyn E. Pemble

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 318
Author(s):  
Paula García Milla ◽  
Rocío Peñalver ◽  
Gema Nieto

Moringa oleifera belongs to the Moringaceae family and is the best known of the native Moringa oleifera genus. For centuries, it has been used as a system of Ayurvedic and Unani medicine and has a wide range of nutritional and bioactive compounds, including proteins, essential amino acids, carbohydrates, lipids, fibre, vitamins, minerals, phenolic compounds, phytosterols and others. These characteristics allow it to have pharmacological properties, including anti-diabetic, anti-inflammatory, anticarcinogenic, antioxidant, cardioprotective, antimicrobial and hepatoprotective properties. The entire Moringa oleifera plant is edible, including its flowers, however, it is not entirely safe, because of compounds that have been found mainly in the root and bark, so the leaf was identified as the safest. Moringa oleifera is recognised as an excellent source of phytochemicals, with potential applications in functional and medicinal food preparations due to its nutritional and medicinal properties; many authors have experimented with incorporating it mainly in biscuits, cakes, brownies, meats, juices and sandwiches. The results are fascinating, as the products increase their nutritional value; however, the concentrations cannot be high, as this affects the organoleptic characteristics of the supplemented products. The aim of this study is to review the application of Moringa oleifera in bakery products, which will allow the creation of new products that improve their nutritional and functional value.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1198
Author(s):  
Pauline H. M. Janssen ◽  
Sébastien Depaifve ◽  
Aurélien Neveu ◽  
Filip Francqui ◽  
Bastiaan H. J. Dickhoff

With the emergence of quality by design in the pharmaceutical industry, it becomes imperative to gain a deeper mechanistic understanding of factors impacting the flow of a formulation into tableting dies. Many flow characterization techniques are present, but so far only a few have shown to mimic the die filling process successfully. One of the challenges in mimicking the die filling process is the impact of rheological powder behavior as a result of differences in flow field in the feeding frame. In the current study, the rheological behavior was investigated for a wide range of excipients with a wide range of material properties. A new parameter for rheological behavior was introduced, which is a measure for the change in dynamic cohesive index upon changes in flow field. Particle size distribution was identified as a main contributing factor to the rheological behavior of powders. The presence of fines between larger particles turned out to reduce the rheological index, which the authors explain by improved particle separation at more dynamic flow fields. This study also revealed that obtained insights on rheological behavior can be used to optimize agitator settings in a tableting machine.


Author(s):  
Mamou Diallo ◽  
Servé W. M. Kengen ◽  
Ana M. López-Contreras

AbstractThe Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 142
Author(s):  
Hu Li ◽  
Raffaello Papadakis

Graphene is a material with outstanding properties and numerous potential applications in a wide range of research and technology areas, spanning from electronics, energy materials, sensors, and actuators to life-science and many more. However, the insolubility and poor dispersibility of graphene are two major problems hampering its use in certain applications. Tethering mono-, di-, or even poly-saccharides on graphene through click-chemistry is gaining more and more attention as a key modification approach leading to new graphene-based materials (GBM) with improved hydrophilicity and substantial dispersibility in polar solvents, e.g., water. The attachment of (poly)saccharides on graphene further renders the final GBMs biocompatible and could open new routes to novel biomedical and environmental applications. In this review, recent modifications of graphene and other carbon rich materials (CRMs) through click chemistry are reviewed.


1968 ◽  
Vol 90 (1) ◽  
pp. 45-50
Author(s):  
R. G. Fenton

The upper bound of the average ram pressure, based on an assumed radial flow velocity field, is derived for plane strain extrusion. Ram pressures are calculated for a complete range of reduction ratios and die angles, considering a wide range of frictional conditions. Results are compared with upper-bound ram pressures obtained by considering velocity fields other than the radial flow field, and it is shown that for a considerable range of reduction ratios and die angles, the radial flow field yields better upper bounds for the average ram pressure.


2018 ◽  
Vol 64 (4) ◽  
pp. 656-679 ◽  
Author(s):  
Jeffrey D Freeman ◽  
Lori M Rosman ◽  
Jeremy D Ratcliff ◽  
Paul T Strickland ◽  
David R Graham ◽  
...  

Abstract BACKGROUND Advancements in the quality and availability of highly sensitive analytical instrumentation and methodologies have led to increased interest in the use of microsamples. Among microsamples, dried blood spots (DBS) are the most well-known. Although there have been a variety of review papers published on DBS, there has been no attempt at describing the full range of analytes measurable in DBS, or any systematic approach published for characterizing the strengths and weaknesses associated with adoption of DBS analyses. CONTENT A scoping review of reviews methodology was used for characterizing the state of the science in DBS. We identified 2018 analytes measured in DBS and found every common analytic method applied to traditional liquid samples had been applied to DBS samples. Analytes covered a broad range of biomarkers that included genes, transcripts, proteins, and metabolites. Strengths of DBS enable its application in most clinical and laboratory settings, and the removal of phlebotomy and the need for refrigeration have expanded biosampling to hard-to-reach and vulnerable populations. Weaknesses may limit adoption in the near term because DBS is a nontraditional sample often requiring conversion of measurements to plasma or serum values. Opportunities presented by novel methodologies may obviate many of the current limitations, but threats around the ethical use of residual samples must be considered by potential adopters. SUMMARY DBS provide a wide range of potential applications that extend beyond the reach of traditional samples. Current limitations are serious but not intractable. Technological advancements will likely continue to minimize constraints around DBS adoption.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4504
Author(s):  
Muhanna Al-shaibani ◽  
Radin Maya Saphira Radin Mohamed ◽  
Nik Sidik ◽  
Hesham Enshasy ◽  
Adel Al-Gheethi ◽  
...  

The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities’ well-being.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
David M. Smith ◽  
Verena Schüller ◽  
Carsten Forthmann ◽  
Robert Schreiber ◽  
Philip Tinnefeld ◽  
...  

Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.


2006 ◽  
Vol 4 (3) ◽  
pp. 365-368 ◽  
Author(s):  
Guo-Bin Jung ◽  
Ay Su ◽  
Cheng-Hsin Tu ◽  
Fang-Bor Weng ◽  
Shih-Hung Chan

The flow-field design of direct methanol fuel cells (DMFCs) is an important subject about DMFC performance. Flow fields play an important role in the ability to transport fuel and drive out the products (H2O,CO2). In general, most fuel cells utilize the same structure of flow field for both anode and cathode. The popular flow fields used for DMFCs are parallel and grid designs. Nevertheless, the characteristics of reactants and products are entirely different in anode and cathode of DMFCs. Therefore, the influences of flow fields design on cell performance were investigated based on the same logic with respect to the catalyst used for cathode and anode nonsymmetrically. To get a better and more stable performance of DMFCs, three flow fields (parallel, grid, and serpentine) utilized with different combinations were studied in this research. As a consequence, by using parallel flow field in the anode side and serpentine flow-field in the cathode, the highest power output was obtained.


Sign in / Sign up

Export Citation Format

Share Document