scholarly journals Identification of Novel Prognostic Risk Signature of Breast Cancer Based on Ferroptosis-Related Genes

Author(s):  
Nan Wang ◽  
Yuanting Gu ◽  
Lin Li ◽  
Jiangrui Chi ◽  
Xinwei Liu ◽  
...  

Abstract Ferroptosis is a non-small molecule-induced form of tumor cell apoptosis, which has been shown to regulate the biological behavior of tumors. Therefore, genes controlling ferroptosis may be promising candidate biomarkers for tumor therapy. In this study, we investigate the function of genes associated with ferroptosis in breast cancer (BC) and systematically evaluate the relationship between ferroptosis-related gene expression profiles and prognosis in BC patients based on the Cancer Genome Atlas RNA-sequencing dataset (TCGA). By using the non-negative matrix factorization clustering method, 1,203 breast cancer samples were clustered into two clearly divided subgroups based on the expression of 237 ferroptosis-related genes. The least absolute shrinkage and selection operator (LASSO) was used to develop risk profiles for five genes, and then these five genes were verified by the polymerase chain reaction (PCR). The relationship between genetic risk characteristics and clinical characteristics of BC is described. The results show that the genetic risk signature associated with clinical characteristics can be used as independent prognostic indicators for BC patients.

2021 ◽  
Vol 12 ◽  
Author(s):  
Dongfang Jia ◽  
Cheng Chen ◽  
Chen Chen ◽  
Fangfang Chen ◽  
Ningrui Zhang ◽  
...  

Mastering the molecular mechanism of breast cancer (BC) can provide an in-depth understanding of BC pathology. This study explored existing technologies for diagnosing BC, such as mammography, ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) and summarized the disadvantages of the existing cancer diagnosis. The purpose of this article is to use gene expression profiles of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) to classify BC samples and normal samples. The method proposed in this article triumphs over some of the shortcomings of traditional diagnostic methods and can conduct BC diagnosis more rapidly with high sensitivity and have no radiation. This study first selected the genes most relevant to cancer through weighted gene co-expression network analysis (WGCNA) and differential expression analysis (DEA). Then it used the protein–protein interaction (PPI) network to screen 23 hub genes. Finally, it used the support vector machine (SVM), decision tree (DT), Bayesian network (BN), artificial neural network (ANN), convolutional neural network CNN-LeNet and CNN-AlexNet to process the expression levels of 23 hub genes. For gene expression profiles, the ANN model has the best performance in the classification of cancer samples. The ten-time average accuracy is 97.36% (±0.34%), the F1 value is 0.8535 (±0.0260), the sensitivity is 98.32% (±0.32%), the specificity is 89.59% (±3.53%) and the AUC is 0.99. In summary, this method effectively classifies cancer samples and normal samples and provides reasonable new ideas for the early diagnosis of cancer in the future.


2020 ◽  
Author(s):  
Xing Chen ◽  
Junjie Zheng ◽  
Min ling Zhuo ◽  
Ailong Zhang ◽  
Zhenhui You

Abstract Background: Breast cancer (BRCA) represents the most common malignancy among women worldwide that with high mortality. Radiotherapy is a prevalent therapeutic for BRCA that with heterogeneous effectiveness among patients. Methods: we proposed to develop a gene expression-based signature for BRCA radiotherapy sensitivity prediction. Gene expression profiles of BRCA samples from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) were obtained and used as training and independent testing dataset, respectively. Differential expression genes (DEGs) in BRCA tumor samples compared with their paracancerous samples in the training set were identified by using edgeR Bioconductor package followed by dimensionality reduction through autoencoder method and univariate Cox regression analysis to screen genes among DEGs that with significant prognosis significance in patients that were previously treated with radiation. LASSO Cox regression method was applied to screen optimal genes for constructing radiotherapy sensitivity prediction signature. Results: 603 DEGs were obtained in BRCA tumor samples, and seven out of which were retained after univariate cox regression analysis. LASSO Cox regression analysis finally remained six genes based on which the radiotherapy sensitivity prediction model was constructed. The signature was proved to be robust in both training and independent testing sets and an independent marker for BRCA radiotherapy sensitivity prediction. Conclusions: this study should be helpful for BRCA patients’ therapeutics selection and clinical decision.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Xinhua Liu ◽  
Yonglin Peng ◽  
Ju Wang

Abstract Breast cancer is a common malignant tumor among women whose prognosis is largely determined by the period and accuracy of diagnosis. We here propose to identify a robust DNA methylation-based breast cancer-specific diagnostic signature. Genome-wide DNA methylation and gene expression profiles of breast cancer patients along with their adjacent normal tissues from the Cancer Genome Atlas (TCGA) were obtained as the training set. CpGs that with significantly elevated methylation level in breast cancer than not only their adjacent normal tissues and the other ten common cancers from TCGA but also the healthy breast tissues from the Gene Expression Omnibus (GEO) were finally remained for logistic regression analysis. Another independent breast cancer DNA methylation dataset from GEO was used as the testing set. Lots of CpGs were hyper-methylated in breast cancer samples compared with adjacent normal tissues, which tend to be negatively correlated with gene expressions. Eight CpGs located at RIIAD1, ENPP2, ESPN, and ETS1, were finally retained. The diagnostic model was reliable in separating BRCA from normal samples. Besides, chromatin accessibility status of RIIAD1, ENPP2, ESPN and ETS1 showed great differences between MCF-7 and MDA-MB-231 cell lines. In conclusion, the present study should be helpful for breast cancer early and accurate diagnosis.


2020 ◽  
Author(s):  
Seokhyun Yoon ◽  
Hye Sung Won ◽  
Keunsoo Kang ◽  
Kexin Qiu ◽  
Woong June Park ◽  
...  

AbstractThe cost of next-generation sequencing technologies is rapidly declining, making RNA-seq-based gene expression profiling (GEP) an affordable technique for predicting receptor expression status and intrinsic subtypes in breast cancer (BRCA) patients. Based on the expression levels of co-expressed genes, GEP-based receptor-status prediction can classify clinical subtypes more accurately than can immunohistochemistry (IHC). Using data from the cancer genome atlas TCGA BRCA and METABRIC datasets, we identified common predictor genes found in both datasets and performed receptor-status prediction based on these genes. By assessing the survival outcomes of patients classified using GEP- or IHC-based receptor status, we compared the prognostic value of the two methods. We found that GEP-based HR prediction provided higher concordance with the intrinsic subtypes and a stronger association with treatment outcomes than did IHC-based hormone receptor (HR) status. GEP-based prediction improved the identification of patients who could benefit from hormone therapy, even in patients with non-luminal BRCA. We also confirmed that non-matching subgroup classification affected the survival of BRCA patients and that this could be largely overcome by GEP-based receptor-status prediction. In conclusion, GEP-based prediction provides more reliable classification of HR status, improving therapeutic decision making for breast cancer patients.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 726
Author(s):  
Hoang Dang Khoa Ta ◽  
Wan-Chun Tang ◽  
Nam Nhut Phan ◽  
Gangga Anuraga ◽  
Sz-Ying Hou ◽  
...  

Breast cancer (BRCA) is one of the most complex diseases and involves several biological processes. Members of the L-antigen (LAGE) family participate in the development of various cancers, but their expressions and prognostic values in breast cancer remain to be clarified. High-throughput methods for exploring disease progression mechanisms might play a pivotal role in the improvement of novel therapeutics. Therefore, gene expression profiles and clinical data of LAGE family members were acquired from the cBioportal database, followed by verification using the Oncomine and The Cancer Genome Atlas (TCGA) databases. In addition, the Kaplan-Meier method was applied to explore correlations between expressions of LAGE family members and prognoses of breast cancer patients. MetaCore, GlueGo, and GluePedia were used to comprehensively study the transcript expression signatures of LAGEs and their co-expressed genes together with LAGE-related signal transduction pathways in BRCA. The result indicated that higher LAGE3 messenger (m)RNA expressions were observed in BRCA tissues than in normal tissues, and they were also associated with the stage of BRCA patients. Kaplan-Meier plots showed that overexpression of LAGE1, LAGE2A, LAGE2B, and LAGE3 were highly correlated to poor survival in most types of breast cancer. Significant associations of LAGE family genes were correlated with the cell cycle, focal adhesion, and extracellular matrix (ECM) receptor interactions as indicated by functional enrichment analyses. Collectively, LAGE family members’ gene expression levels were related to adverse clinicopathological factors and prognoses of BRCA patients; therefore, LAGEs have the potential to serve as prognosticators of BRCA patients.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2673
Author(s):  
YoungJoon Park ◽  
Jaekwang Jeong ◽  
Shin Seong ◽  
Wonnam Kim

The survival rates for breast cancer (BC) have improved in recent years, but resistance, metastasis, and recurrence still remain major therapeutic challenges for BC. The acidic tumor microenvironment (TME) has attracted attention because of its association with tumorigenesis, metastasis, drug resistance, and immune surveillance. In this study, we evaluated natural compounds from traditional herbal medicine used to treat cancer that selectively target genes regulated by extracellular acidosis. We integrated four transcriptomic data including BC prognostic data from The Cancer Genome Atlas database, gene expression profiles of MCF-7 cells treated with 102 natural compounds, patterns of gene profiles by acidic condition, and single-cell RNA-sequencing from BC patient samples. Bruceine D (BD) was predicted as having the highest therapeutic potential, having an information gain (IG) score of 0.24, to regulate reprogrammed genes driven by acidosis affecting the survival of BC patients. BD showed the highest IG on EMT (IG score: 0.11) and invasion (IG score: 0.1) compared to the other phenotypes with the CancerSEA database. BD also demonstrated therapeutic potential by interfering with the tumor cell–TME interactions by reducing the amyloid beta precursor protein and CD44 expression. Therefore, BD is a potential candidate to target the acidic TME induced metastatic process in BC.


2020 ◽  
Vol 10 ◽  
Author(s):  
Shenghua Zhuo ◽  
Zhimin Chen ◽  
Yibei Yang ◽  
Jinben Zhang ◽  
Jianming Tang ◽  
...  

Ferroptosis is a form of cell death characterized by non-apoptosis induced by small molecules in tumors. Studies have demonstrated that ferroptosis regulates the biological behaviors of tumors. Therefore, genes that control ferroptosis can be a promising candidate bioindicator in tumor therapy. Herein, functions of ferroptosis-related genes in glioma were investigated. We systematically assessed the relationship between ferroptosis-related genes expression profiles and prognosis in glioma patients based on The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) RNA sequencing datasets. Using the non-negative matrix factorization (NMF) clustering method, 84 ferroptosis-related genes in the RNA sequencing data were distinctly classified into two subgroups (named cluster 1 and cluster 2) in glioma. The least absolute shrinkage and selection operator (LASSO) was used to develop a 25 gene risk signature. The relationship between the gene risk signature and clinical features in glioma was characterized. Results show that the gene risk signature associated with clinical features can be as an independent prognostic indicator in glioma patients. Collectively, the ferroptosis-related risk signature presented in this study can potentially predict the outcome of glioma patients.


2020 ◽  
Author(s):  
Xiao-lu Zhang ◽  
Jia Wang ◽  
Cun Liu ◽  
Chun-di Gao ◽  
Jing Zhuang ◽  
...  

Abstract Background Prognostic evaluation of breast cancer is crucial in deciding the course of clinical treatment. The levels of immune cells and stromal cells in tumor microenvironment provide a new approach to evaluate the prognosis of breast cancer.Method: We obtained mRNA gene expression profiles of breast cancer patients from The Cancer Genome Atlas (TCGA), evaluated immune and stromal scores in tumor microenvironment (TME) using the ESTIMATE algorithm. We also constructed a protein-protein interaction (PPI) network, and performed function enrichment analysis and prognostic analysis.Results A total of 898 samples were divided into two groups corresponding to high and low score for both stromal as well as immune scores. 247 differentially expressed genes were identified, most of which were associated with T cell activation, lymphocyte differentiation, and cytokine receptor activity. We finally found 10 hub genes. Among them, we were able to confirm the following genes significantly association with prognosis: CCR5, CD2, CD3E, and CD5. Two important modules were isolated from the PPI network and for further analysis.Conclusion This study identified a group of genes significantly associated with the prognosis of breast cancer, and their efficacy still requires further clinical data validation.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 180
Author(s):  
Christina Mertens ◽  
Matthias Schnetz ◽  
Claudia Rehwald ◽  
Stephan Grein ◽  
Eiman Elwakeel ◽  
...  

Macrophages supply iron to the breast tumor microenvironment by enforced secretion of lipocalin-2 (Lcn-2)-bound iron as well as the increased expression of the iron exporter ferroportin (FPN). We aimed at identifying the contribution of each pathway in supplying iron for the growing tumor, thereby fostering tumor progression. Analyzing the expression profiles of Lcn-2 and FPN using the spontaneous polyoma-middle-T oncogene (PyMT) breast cancer model as well as mining publicly available TCGA (The Cancer Genome Atlas) and GEO Series(GSE) datasets from the Gene Expression Omnibus database (GEO), we found no association between tumor parameters and Lcn-2 or FPN. However, stromal/macrophage-expression of Lcn-2 correlated with tumor onset, lung metastases, and recurrence, whereas FPN did not. While the total iron amount in wildtype and Lcn-2−/− PyMT tumors showed no difference, we observed that tumor-associated macrophages from Lcn-2−/− compared to wildtype tumors stored more iron. In contrast, Lcn-2−/− tumor cells accumulated less iron than their wildtype counterparts, translating into a low migratory and proliferative capacity of Lcn-2−/− tumor cells in a 3D tumor spheroid model in vitro. Our data suggest a pivotal role of Lcn-2 in tumor iron-management, affecting tumor growth. This study underscores the role of iron for tumor progression and the need for a better understanding of iron-targeted therapy approaches.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Erkhembayar Jadamba ◽  
Miyoung Shin

Drug repositioning offers new clinical indications for old drugs. Recently, many computational approaches have been developed to repurpose marketed drugs in human diseases by mining various of biological data including disease expression profiles, pathways, drug phenotype expression profiles, and chemical structure data. However, despite encouraging results, a comprehensive and efficient computational drug repositioning approach is needed that includes the high-level integration of available resources. In this study, we propose a systematic framework employing experimental genomic knowledge and pharmaceutical knowledge to reposition drugs for a specific disease. Specifically, we first obtain experimental genomic knowledge from disease gene expression profiles and pharmaceutical knowledge from drug phenotype expression profiles and construct a pathway-drug network representing a priori known associations between drugs and pathways. To discover promising candidates for drug repositioning, we initialize node labels for the pathway-drug network using identified disease pathways and known drugs associated with the phenotype of interest and perform network propagation in a semisupervised manner. To evaluate our method, we conducted some experiments to reposition 1309 drugs based on four different breast cancer datasets and verified the results of promising candidate drugs for breast cancer by a two-step validation procedure. Consequently, our experimental results showed that the proposed framework is quite useful approach to discover promising candidates for breast cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document