scholarly journals Low-cost, simple and eco-friendly biosynthesis of CeO2-NPs using extract of Pelargonium hortorum for the photocatalytic and antioxidant applications

Author(s):  
Ali Ganbarianzade Mahabadi ◽  
Abbas Mirzakhani ◽  
Amir Azizi ◽  
Saied Chavoshi ◽  
Shahab Khaghani

Abstract In this paper, firstly the phytochemical composition in the aqueous extract of Pelargonium, growing wildly in the center of Iran, was studied. Folin–Ciocalteu and Aluminum chloride methods and the GC/MS technique were used to determine the total phenolic, flavonoid contents, and volatile constituents in the extract, respectively. The amounts of the total phenolic and flavonoid contents in the extract were found to be 136.5 mg GA/g and 63.9 mg RU/g, respectively. Twenty-one compounds, representing 15 (about 80.0%) of the total volatile constituents were identified. The main components of the volatile constituent were α-pinene (25.28%) and fenchyl acetate (20.63%). Secondly, a fast, simple, and eco-friendly biosynthesis of cerium oxide nanoparticles (CeO2-NPs) were investigated using the extract of Pelargonium as a natural reducing and stabilizing agent. Several advance techniques such as Ultraviolet-Visible (UV–Vis) spectroscopy, X-ray diffraction (XRD), Scanning electron microcopy (FESEM), Dynamic light scattering (DLS), and Brunaure Emmett-Teller (BET) were used for the analysis and characterization of the synthesized nanoparticles. The results of the characterization analysis showed that the prepared nanoparticles were spherical in shape, with an average size of 28 nm and zeta potential of -25.8 mV, and had 33.84 m2/g BET surface area, 9.31 nm mane diameter pore, and a total pore volume of 0.078 cm3/g. Finally, the practical applications including the antioxidant and photocatalyst activity of the biosynthesized CeO2-NPs were evaluated. An analysis of antioxidant and catalytic activities showed that the biosynthesized CeO2-NPs have a good ability of scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical with the IC50 value of 42.7 µg/mL and also good reduction ability of hexavalent chromium {Cr(VI)} ions with a reduction efficiency of 94% in an aqueous solution containing 10 mg/L of Cr(VI) of ion with natural pH of 5.5 and CeO2-NPs dose of 200 mg/L during 60 min.

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 867 ◽  
Author(s):  
Cataldo Arcuri ◽  
Lorenzo Monarca ◽  
Francesco Ragonese ◽  
Carmen Mecca ◽  
Stefano Bruscoli ◽  
...  

The synthesis of ultrasmall UiO-66 nanoparticles (NPs) with an average size of 25 nm, determined by X-ray powder diffraction and electron microscopies analysis, is reported. The NPs were stabilized in water by dialyzing the NP from the DMF used for the synthesis. DLS measurements confirmed the presence of particles of 100 nm, which are spherical aggregates of smaller particles of 20–30 nm size. The NP have a BET surface area of 700 m2/g with an external surface area of 300 m2/g. UiO-66_N (UiO-66 nanoparticles) were loaded with acridine orange as fluorescent probe. UV-vis spectroscopy analysis revealed no acridine loss after 48 h of agitation in simulated body fluid. The biocompatibility of UiO-66_N was evaluated in human glioblastoma (GBM) cell line U251, the most malignant (IV grade of WHO classification) among brain tumors. In U251 cells, UiO-66_N are inert since they do not alter the cell cycle, the viability, migration properties, and the expression of kinases involved in cancer cell growth. The internalization process was evident after a few hours of incubation. After 24 h, UiO-66_N@Acr (UiO-66_N loaded with acridine orange) were detectable around the nuclei of the cells. These data suggest that small UiO-66 are biocompatible NP and could represent a potential carrier for drug delivery in glioblastoma therapies.


Agriculture ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 114 ◽  
Author(s):  
Wen-Tien Tsai ◽  
Chien-Hung Hsu ◽  
Yu-Quan Lin

The use of biochar in the horticulture and crop fields is a recent method to improve soil fertility due to its porous features and rich nutrients. In the present study, dairy manure (DM) was used as a biomass precursor in the preparation of highly porous biochar (DM-BC) produced at specific conditions. Based on N2 adsorption-desorption isotherms and scanning electron microscopy (SEM) observations, the resulting biochar featured its microporous/mesoporous textures with a BET surface area of about 300 m2/g and total pore volume of 0.185 cm3/g, which could be a low-cost biosorbent for the effective removal of methylene blue (MB) from the aqueous solution. As observed by the energy dispersive X-ray spectroscopy (EDS), the primary inorganic nutrients on the surface of DM-BC included calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P), silicon (Si), sulfur (S), sodium (Na) and aluminum (Al). Furthermore, the resulting biochar was investigated in duplicate for its biosorption performance of cationic compound (i.e., methylene blue, MB) from the aqueous solution with various initial MB concentrations and DM-BC dosages at 25 °C. The findings showed that the biosorption kinetic parameters fitted by the pseudo-second order rate model with high correlations were consistent with its porous features. These experimental results suggested that the porous DM-based biochar could be reused as a biosorbent, biofertilizer, or soil amendments due to the high porosity and the abundance in nutrient minerals.


2019 ◽  
Vol 9 (19) ◽  
pp. 3980 ◽  
Author(s):  
Saowanee Wijitkosum ◽  
Preamsuda Jiwnok

For an agricultural country such as Thailand, converting agricultural waste into biochar offers a potential solution to manage massive quantities of crop residues following harvest. This research studied the structure and chemical composition of biochar obtained from cassava rhizomes, cassava stems and corncobs, produced using a patented locally-manufactured biochar kiln using low-cost appropriate technology designed to be fabricated locally by farmers. The research found that cassava stems yielded the highest number of Brunauer-Emmett-Teller (BET) surface area in the biochar product, while chemical analysis indicated that corncobs yielded the highest amount of C (81.35%). The amount of H in the corncob biochar was also the highest (2.42%). The study also showed biochar produced by slow pyrolysis was of a high quality, with stable C and low H/C ratio. Biochar’s high BET surface area and total pore volume makes it suitable for soil amendment, contributing to reduced soil density, higher soil moisture and aeration and reduced leaching of plant nutrients from the rhizosphere. Biochar also provides a conducive habitat for beneficial soil microorganisms. The findings indicate that soil incorporation of biochar produced from agricultural crop residues can enhance food security and mitigate the contribution of the agricultural sector to climate change impacts.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 450-463
Author(s):  
Xiya Li ◽  
Jieqiong Qiu ◽  
Yiqi Hu ◽  
Xiaoyuan Ren ◽  
Lu He ◽  
...  

The production of low-cost biologically activated carbons (BACs) is urgent need of environmental protection and ecological sustainability. Hence, walnut shells were treated by traditional pyrolysis, direct KOH impregnation and combined activation composed of hydrothermal carbonization and two-step H3PO4- and pyrolysis-activation process to obtain porous carbon with high adsorption capacity. It was found that the best adsorption capacity for iodine and organic dye methylene blue (MB) can be obtained using the KOH impregnation at impregnation ratio of 1:1 or combined activation comprising of 2 h H3PO4 activation and 1 h pyrolysis activation at 1000°C. The produced KOH, H3PO4/pyrolysis activated BACs at the optimum conditions are superior to that of commercial ACs, 9.4 and 1.3 times for MB removal, 4 and 4.5 times for iodine number respectively. Characterization results demonstrated their porous structure with very good textural properties such as high BET surface area (1689.1 m2/g, 1545.3 m2/g) and high total pore volume (0.94 cm3/g, 0.96 cm3/g). The N2 adsorption-desorption isotherm of H3PO4/pyrolysis activated hydrochar suggested the co-existence of micro and meso-pores. Moreover, they are more effective for the removal of Fe(III) and Cr(VI) from aqueous solution than the commercial AC, suggesting a promising application in the field of water treatment.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Cecile Charbonneau ◽  
Theo Tanner ◽  
Matthew L. Davies ◽  
Trystan M. Watson ◽  
David A. Worsley

Low-cost water-based P25-TiO2pastes were formulated and used to produce porous TiO2films in application to the fabrication of dye-sensitized solar cells. The structural properties of the films were characterized using a variety of techniques such as stylus profilometry, FEG-SEM imaging, BET surface area, and BJH pore size analyses. These were compared to films produced from a commercial paste, DSL 18 NR-AO (Dyesol). The major difference was in the fraction of macroporosity: 23% of the total pore volume for films produced with the commercial material and 67–73% for the P25-TiO2films owing to the vast difference in dispersion and size distribution of the particles in the two types of pastes. The macroporosity was found to have a dramatic effect on the dye diffusion kinetics measured usingin situUV-Vis reflectance spectroscopy. The sensitization of P25-based films was much faster for heavily macroporous P25-TiO2films (>90% saturation at 15–35 mins) than for their commercial analogue (>90% saturation at 110 mins). DSC devices built with optimized P25-TiO2photoanodes showed better performance at short dye immersion time (30 mins and 1 hr) due to faster percolation of the dye molecules through the film.


Author(s):  
Kanchana Manirajah ◽  
Sheela V. Sukumaran ◽  
NorNasuha Abdullah ◽  
Hazirah A. Razak ◽  
Nurul Ainirazali

A low cost Activated Carbon (AC) was prepared by using waste tyres as raw material for the removal of 2-chlorophenol (2-CP). The AC adsorbent was prepared and activated by pyrolysis process at 900 ºC under constant nitrogen flow. The physical properties of the AC produced was characterized using X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM), and Fourier Transform Infra Red (FTIR). The influence of initial adsorbate concentration, pH and adsorbent dosage on the removal of 2-CP in the batch-operational mode at ambient temperature were also investigated. The results obtained showed the AC presence of an amorphous carbon with high BET surface area and a total pore volume of 208 m2.g-1 and 0.5817 cm3, respectively. The highest adsorption capacity of 2-CP by the AC absorbent was achieved at an initial concentration of 10 mg.L-1, pH 5, and adsorbent dosage of 0.5 g in the first 10 min of contact time. This finding proves that the low cost-AC produced from waste tyres can be utilized for an effective removal of chemical plant wastewater containing toxic chlorine substances. Copyright © 2019 BCREC Group. All rights reserved 


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1830
Author(s):  
Raúl González-Domínguez ◽  
Ana Sayago ◽  
Ángeles Fernández-Recamales

High-quality wine vinegars with unique organoleptic characteristics are produced in southern Spain under three Protected Designations of Origin (PDO), namely “Jerez”, “Condado de Huelva” and “Montilla-Moriles”. To guarantee their authenticity and avoid frauds, robust and low-cost analytical methodologies are needed for the quality control and traceability of vinegars. In this study, we propose the use of ultraviolet-visible spectroscopy in combination with multivariate statistical tools to discriminate Spanish wine vinegars according to their geographical origin, as well as to predict their physicochemical and functional properties. Linear discriminant analysis provided a clear clustering of vinegar samples according to the PDO with excellent classification performance (98.6%). Furthermore, partial least squares regression analysis demonstrated that spectral data can serve as accurate predictors of the total phenolic content and antioxidant activity of vinegars. Accordingly, UV-Vis spectroscopy stands out as a suitable analytical tool for simple and rapid authentication and traceability of vinegars.


2017 ◽  
Vol 7 (1) ◽  
pp. 65-74
Author(s):  
Pandian Arjun ◽  
Deepak Semwal ◽  
Ruchi Semwal ◽  
Malaiyandi Malaisamy ◽  
Chandrasekaran Sivaraj ◽  
...  

2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Hanxiang Chen ◽  
Jianjian Yi ◽  
Zhao Mo ◽  
Yanhua Song ◽  
Wenshu Yang ◽  
...  

Abstract Photocatalysis technology has potential application in the field of energy and environment. How to expand visible light utilization and promote the separation efficiency of the carriers are the key issues for the high active photocatalysts preparation and future practical applications. In this work, a ternary metal sulfide Nb0.9Ta0.1S2 was prepared and used as an electron collector in the photocatalytic application. As a result, the generated electrons are quickly transferred to the surface of the composite to participate in the reaction. It was demonstrated that the photocatalytic activity of 2D-C3N4 was enhanced after the modification of Nb0.9Ta0.1S2. The Nb0.9Ta0.1S2/2D-C3N4 composite material was synthesized by solvothermal method. The composition of 5% Nb0.9Ta0.1S2/2D-C3N4 showed the highest H2 evolution rate of 1961.6 μmolg−1h−1, which was 6.6 times that of 2D-C3N4. The 15% Nb0.9Ta0.1S2/2D-C3N4 exhibited the best activity in Rhodamine B degradation rate of 97% in 2 h, which is 50% higher than that of 2D-C3N4. Nb0.9Ta0.1S2/2D-C3N4 can be used as electron trap to promote the effective separation of electron–hole pairs. This work provides benchmarks in exploring low-cost and efficient cocatalyst.


Sign in / Sign up

Export Citation Format

Share Document