scholarly journals Nectar Microbial Diversity and Changes Associated with Environmental Exposure

2020 ◽  
Author(s):  
Claire E Lamb ◽  
Caroline L Marden ◽  
Alexandra Ebeling ◽  
Rocio Perez-Barrales ◽  
Joy E.M. Watts

Abstract Background: Plants are critical to global environmental health and food production strategies; most plants utilise flowers as part of their reproduction cycle. Flowers attract pollinators using a range of complex strategies and floral nectar is an essential component of this attraction profile. Nectar is a nutrient rich liquid, containing a range of sugars, organic acids, amino acids, lipids and vitamins, found to be a suitable habitat for a wide range of fungi, but so far, limited bacterial diversity has been detected. Several antimicrobial properties and adverse environmental conditions, such as high osmotic pressure present in the nectar were thought to reduce bacterial numbers.Results: This study reports the next generation sequencing analysis of the bacterial and fungal diversity in flower nectar. This was achieved in four floral species native to the United Kingdom (Lamium album, white dead nettle; Narcissus pseudonarcissus, daffodil, Hyacinthoides non-scripta, English bluebell and Digitalis purpurea, the common foxglove). All flower species examined had a diverse bacterial and fungal populations present with a core microbiome detected, dominated by Proteobacteria and Firmicutes phyla, while Basidomycota were the most persistent fungal phyla in all of the floral nectar types sampled. However, many unique bacterial and fungal species were detected at lower abundances. Furthermore, in N. pseudonarcissus and D. purpurea floral nectar, the microbial diversity detected in the nectar between flowers exposed to the environment versus non-environment exposed flowers, was different.Conclusions: These results suggest that floral nectars in different plant species do contain a distinct microbiome and the individual flower microbial community diversity may be affected by floral nectar composition, insect visitation and other environmental factors.

mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Sean M. Gibbons ◽  
Monika Scholz ◽  
Alan L. Hutchison ◽  
Aaron R. Dinner ◽  
Jack A. Gilbert ◽  
...  

ABSTRACTDiversity is often associated with the functional stability of ecological communities from microbes to macroorganisms. Understanding how diversity responds to environmental perturbations and the consequences of this relationship for ecosystem function are thus central challenges in microbial ecology. Unimodal diversity-disturbance relationships, in which maximum diversity occurs at intermediate levels of disturbance, have been predicted for ecosystems where life history tradeoffs separate organisms along a disturbance gradient. However, empirical support for such peaked relationships in macrosystems is mixed, and few studies have explored these relationships in microbial systems. Here we use complex microbial microcosm communities to systematically determine diversity-disturbance relationships over a range of disturbance regimes. We observed a reproducible switch between community states, which gave rise to transient diversity maxima when community states were forced to mix. Communities showed reduced compositional stability when diversity was highest. To further explore these dynamics, we formulated a simple model that reveals specific regimes under which diversity maxima are stable. Together, our results show how both unimodal and non-unimodal diversity-disturbance relationships can be observed as a system switches between two distinct microbial community states; this process likely occurs across a wide range of spatially and temporally heterogeneous microbial ecosystems.IMPORTANCEThe diversity of microbial communities is linked to the functioning and stability of ecosystems. As humanity continues to impact ecosystems worldwide, and as diet and disease perturb our own commensal microbial communities, the ability to predict how microbial diversity will respond to disturbance is of critical importance. Using microbial microcosm experiments, we find that community diversity responds to different disturbance regimes in a reproducible and predictable way. Maximum diversity occurs when two communities, each suited to different environmental conditions, are mixed due to disturbance. This maximum diversity is transient except under specific regimes. Using a simple mathematical model, we show that transient unimodality is likely a common feature of microbial diversity-disturbance relationships in fluctuating environments.


2019 ◽  
Author(s):  
Claudia Coleine ◽  
Jason E. Stajich ◽  
Nuttapon Pombubpa ◽  
Laura Zucconi ◽  
Silvano Onofri ◽  
...  

AbstractDescribing the total biodiversity of an environmental metacommunity is challenging due to the presence of cryptic and rare species and incompletely described taxonomy. How many samples to collect is a common issue faces ecologists when designing fieldwork sampling: collecting many samples may indeed capture the whole metacommunity structure, but can be prohibitively costly and lead to an enormous amount of data to analyse. Conversely, too few samples may yield inadequate and incomplete data which can prohibit complete assessment of community diversity. High-throughput sequencing allows examination of large numbers of samples enabling comprehensive biodiversity assessments. In this study, we sought to estimate how the scale of sampling affects accuracy of community diversity description in order to develop strategies to exhaustively describe the microbial diversity of cryptoendolithic communities in the McMurdo Dry Valleys in Antarctica accounted as the closest Martian analogue on Earth, exhibiting extreme conditions such as low temperatures, wide thermal fluctuations, low nutrient availability and high UV radiation. We found that sampling effort, based on accumulation curves analysis, had a considerable impact on assessing species richness and composition in these ecosystems, confirming that a sampling as large as nine rock specimens was necessary to detect almost all fungal species present, but was not sufficient to capture whole bacterial assemblage.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
L. Paulina Maldonado-Ruiz ◽  
Saraswoti Neupane ◽  
Yoonseong Park ◽  
Ludek Zurek

Abstract Background The lone star tick (Amblyomma americanum), an important vector of a wide range of human and animal pathogens, is very common throughout the East and Midwest of the USA. Ticks are known to carry non-pathogenic bacteria that may play a role in their vector competence for pathogens. Several previous studies using the high throughput sequencing (HTS) technologies reported the commensal bacteria in a tick midgut as abundant and diverse. In contrast, in our preliminary survey of the field collected adult lone star ticks, we found the number of culturable/viable bacteria very low. Methods We aimed to analyze the bacterial community of A. americanum by a parallel culture-dependent and a culture-independent approach applied to individual ticks. Results We analyzed 94 adult females collected in eastern Kansas and found that 60.8% of ticks had no culturable bacteria and the remaining ticks carried only 67.7 ± 42.8 colony-forming units (CFUs)/tick representing 26 genera. HTS of the 16S rRNA gene resulted in a total of 32 operational taxonomic units (OTUs) with the dominant endosymbiotic genera Coxiella and Rickettsia (> 95%). Remaining OTUs with very low abundance were typical soil bacterial taxa indicating their environmental origin. Conclusions No correlation was found between the CFU abundance and the relative abundance from the culture-independent approach. This suggests that many culturable taxa detected by HTS but not by culture-dependent method were not viable or were not in their culturable state. Overall, our HTS results show that the midgut bacterial community of A. americanum is very poor without a core microbiome and the majority of bacteria are endosymbiotic.


2018 ◽  
Vol 16 (6) ◽  
pp. 914-920 ◽  
Author(s):  
Qing Wu ◽  
Shuqun Li ◽  
Xiaofei Zhao ◽  
Xinhua Zhao

Abstract The abuse of antibiotics is becoming more serious as antibiotic use has increased. The sulfa antibiotics, sulfamerazine (SM1) and sulfamethoxazole (SMZ), are frequently detected in a wide range of environments. The interaction between SM1/SMZ and bacterial diversity in drinking water was investigated in this study. The results showed that after treatment with SM1 or SMZ at four different concentrations, the microbial community structure of the drinking water changed statistically significantly compared to the blank sample. At the genus level, the proportions of the different bacteria in drinking water may affect the degradation of the SM1/SMZ. The growth of bacteria in drinking water can be inhibited after the addition of SM1/SMZ, and bacterial community diversity in drinking water declined in this study. Furthermore, the resistance gene sul2 was induced by SM1 in the drinking water.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 978 ◽  
Author(s):  
Lian-Hua Fu ◽  
Qing-Long Gao ◽  
Chao Qi ◽  
Ming-Guo Ma ◽  
Jun-Feng Li

Silver-based antimicrobial nanomaterials are considered as the most promising antibacterial agents owing to their outstanding antimicrobial efficacy and their relatively low toxicity to human beings. In this work, we report on a facile and environment-friendly microwave-hydrothermal method to prepare cellulose/Ag nanocomposites using hemicellulose as the reductant. The influences of the microwave-hydrothermal heating time and temperature, as well as the hemicellulose concentration on the formation of cellulose nanocomposites, were investigated in detail. Experimental results indicated that the hemicellulose was an effective reductant for silver ions, with higher temperature and longer heating time favoring the formation of silver with higher crystallinity and mass content in the nanocomposites. Moreover, the antimicrobial properties of the as-prepared cellulose/Ag nanocomposites were explored using Gram-positive S. aureus ATCC 6538 and Gram-negative E. coli HB 101 by both disc diffusion method and agar dilution method, and the nanocomposites showed excellent antibacterial activity. These results demonstrate that the as-prepared cellulose/Ag nanocomposites, as a kind of antibacterial material, are promising for applications in a wide range of biomedical fields.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Yohsuke Ogawa ◽  
Kazumasa Shiraiwa ◽  
Yoshitoshi Ogura ◽  
Tadasuke Ooka ◽  
Sayaka Nishikawa ◽  
...  

ABSTRACTErysipelothrix rhusiopathiaecauses swine erysipelas, an important infectious disease in the swine industry. In Japan, the incidence of acute swine erysipelas due toE. rhusiopathiaeserovar 1a has recently increased markedly. To study the genetic relatedness of the strains from the recent cases, we analyzed 34E. rhusiopathiaeserovar 1a swine isolates collected between 1990 and 2011 and further investigated the possible association of the live Koganei 65-0.15 vaccine strain (serovar 1a) with the increase in cases. Pulsed-field gel electrophoresis analysis revealed no marked variation among the isolates; however, sequencing analysis of a hypervariable region in the surface-protective antigen A gene (spaA) revealed that the strains isolated after 2007 exhibited the samespaAgenotype and could be differentiated from older strains. Phylogenetic analysis based on genome-wide single-nucleotide polymorphisms (SNPs) revealed that the Japanese strains examined were closely related, showing a relatively small number of SNPs among them. The strains were classified into four major lineages, with Koganei 65-0.15 (lineage III) being phylogenetically separated from the other three lineages. The strains isolated after 2007 and the two older strains constituted one major lineage (lineage IV) with a specificspaAgenotype (M203/I257-SpaA), while the recent isolates were further divided into two geographic groups. The remaining older isolates belonged to either lineage I, with the I203/L257-SpaA type, or lineage II, with the I203/I257-SpaA type. These results indicate that the recent increased incidence of acute swine erysipelas in Japan is associated with two sublineages of lineage IV, which have independently evolved in two different geographic regions.IMPORTANCEUsing large-scale whole-genome sequence data fromErysipelothrix rhusiopathiaeisolates from a wide range of hosts and geographic origins, a recent study clarified the existence of three distinct clades (clades 1, 2, and 3) that are found across multiple continents and host species, representing both livestock and wildlife, and an “intermediate” clade between clade 2 and the dominant clade 3 within the species. In this study, we found that theE. rhusiopathiaeJapanese strains examined exhibited remarkably low levels of genetic diversity and confirmed that all of the Japanese and Chinese swine isolates examined in this study belong to clonal lineages within the intermediate clade. We report thatspaAgenotyping ofE. rhusiopathiaestrains is a practical alternative to whole-genome sequencing analysis of theE. rhusiopathiaeisolates from eastern Asian countries.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Evangelia A Pavlatou

The transmission of a wide range of diseases, related to the infection by pathogenic microorganisms is a major public health problem that daily endangers the safety of human population. Silver has been thoroughly studied and used against bacteria due to its antimicrobial properties. Nanostructured silver gathers all the advantages of the silver itself, as well as the advanced performance of the nanomaterials. Thus, currently, silver nanoparticles constitute the most widely used kind of nanoparticles in biomedicine, due to their attractive antimicrobial properties. A variety of physical and chemical methods are employed for the AgNPs synthesis. However, many of them include the use of toxic reagents or require large amounts of energy, during the synthesis process. For this reason, many eco-friendly methods are proposed in order to synthesize AgNPs. Hence, biogenic synthesis of AgNPs, utilizing biological resources opens a novel route for the development of alternative production processes.These methods seem to have significant advantages, as the extracts contribute positively to the formation and enhancement of the antimicrobial activity of AgNPs, also acting as protective agents of the produced particles. In this review an integrated approach of AgNPs bio-synthetic methods using microorganisms, such as bacteria and fungi, plants and plant extracts, as well as several templates, like DNA and viruses is discussed, shedding light on the comparative advantages of them.


2018 ◽  
Vol 35 ◽  
pp. 1-12
Author(s):  
Cynthia Diniz Souza ◽  
Vandick S. Batista ◽  
Nidia Noemi Fabré

Seasonal ecological effects caused by temperature and photoperiod are typically considered minimal in the tropics. Nevertheless, annual climate cycles may still influence the distribution and abundance of tropical species. Here, we investigate whether seasonal patterns of precipitation and wind speed influence the structure of coastal fish assemblages and fishing yields in northeast Brazil. Research trips were conducted during the rainy and dry seasons using commercial boats and gear to sample the fish community. Diversity was analyzed using abundance Whittaker curves, diversity profiles and the Shannon index. Principal Component Analysis (PCA) was used to analyze associations between the abundance of species and various environmental variables related to seasonality. A total of 2,373 fish were collected, representing 73 species from 34 families – 20 of which were classified as both frequent and abundant. Species richness was greater and more equitable during the rainy season than the dry season – driven by changes in the precipitation rather than to wind speed. Species diversity profiles were slightly greater during the rainy season than the dry season, but this difference was not statistically significant. Using PCA was identified three groups of species: the first associated with wind speed, the second with precipitation, and the third with a wide range of sampling environments. This latter group was the largest and most ecologically heterogeneous. We conclude that tropical coastal fish assemblages are largely influenced by local variables, and seasonally mediated by annual changes related to precipitation intensity and wind speed, which in turn influences fishery yields.


el–Hayah ◽  
2012 ◽  
Vol 1 (4) ◽  
Author(s):  
Prihastuti Prihastuti

<p>Soils are made up of organic and an organic material. The organic soil component contains all the living creatures in the soil and the dead ones in various stages of decomposition.  Biological activity in soil helps to recycle nutrients, decompose organic matter making nutrient available for plant uptake, stabilize humus, and form soil particles.<br />The extent of the diversity of microbial in soil is seen to be critical to the maintenance of soil health and quality, as a wide range of microbial is involved in important soil functions.  That ecologically managed soils have a greater quantity and diversity of soil microbial. The two main drivers of soil microbial community structure, i.e., plant type and soil type, are thought to exert their function in a complex manner. The fact that in some situations the soil and in others the plant type is the key factor determining soil microbial diversity is related to their complexity of the microbial interactions in soil, including interactions between microbial and soil and microbial and plants. <br />The basic premise of organic soil stewardship is that all plant nutrients are present in the soil by maintaining a biologically active soil environment. The diversity of microbial communities has on ecological function and resilience to disturbances in soil ecosystems. Relationships are often observed between the extent of microbial diversity in soil, soil and plant quality and ecosystem sustainability. Agricultural management can be directed toward maximizing the quality of the soil microbial community in terms of disease suppression, if it is possible to shift soil microbial communities.</p><p>Keywords: structure, microbial, implication, sustainable agriculture<br /><br /></p>


Sign in / Sign up

Export Citation Format

Share Document