scholarly journals Enhanced Cd Phytoextraction by Solanum Nigrum L From Contaminated Soils Combined With the Application of N Fertilizers and Double Harvests

Author(s):  
Wei Yang ◽  
Huiping Dai ◽  
Lidia Skuza ◽  
Shuhe Wei

Abstract It is very important to increase phytoremediation efficiency in practice in suitable climatic conditions for plant growth by multiple harvests. Solanum nigrum L. is a Cd hyperaccumulator. In present experiment, after applying different types of N fertilizers (NH4HCO3, NH4Cl, (NH4)2SO4, CH4N2O), root and shoot biomasses and Cd phytoextraction efficiency of S. nigrum effectively improved (P < 0.05), whereas shoot biomasses of S. nigrum harvested at the first florescence stage plus the amounts at the second florescence stage were higher than those at the maturation stage, which indicated that S. nigrum Cd phyto-accumulation efficiency was higher in double harvests at florescence stages compared to a single harvest due to the lack of a clear change in Cd concentration (P < 0.05). The pH value and extractable Cd contents showed no changes, regardless whether N fertilizer was added or not at different growth stages. In addition, after N fertilizer supply, H2O2 and MDA contents in S. nigrum in vivo were lower compared to CK; Similarly, the concentration of proline was decreased as well (P < 0.05). As one of the antioxidant enzymes, CAT activity in S. nigrum shoots, harvested at different growth periods after 4 types of N fertilizer application, obviously decreased, while POD and SOD activities increased (P < 0.05). Our study demonstrated that (NH4)2SO4 treatment exerted the most positive effect and the CH4N2O the second-most positive effect effect on S. nigrum Cd phytoremediation efficiency in double harvests at florescence stages and the growth conditions were better than others.

2011 ◽  
Vol 48 (No. 1) ◽  
pp. 1-6
Author(s):  
L. Hřivna ◽  
R. Richter ◽  
T. Lošák ◽  
J. Hlušek

&nbsp;In 1999, the effect of increasing levels of nitrogen at the initial (13.9 mg.kg<sup>&ndash;1</sup>) and increased (40 mg.kg<sup>&ndash;1</sup>) level of watersoluble sulphur (S<sub>wat</sub>) was studied in winter rape (cv. Lirajet) grown in pots. A synergetic effect of nitrogen on concentrations of Ca and Mg was demonstrated in the growth stages DC 20&ndash;29 and 31&ndash;39. Levels of P and K were balanced. In variants with a low content of S<sub>wat </sub>in soil to 40 mg.kg<sup>&ndash;1 </sup>of soil S concentration increased. With the increasing dose of N the content of S decreased from 1.00% to 0.78% and from 0.68% to 0.38% in DC 20&ndash;29 and DC 31&ndash;39, respectively. An increased level of S in soil changed the ratio N/S. In variants with a natural (i.e. low) content of S in soil, this ratio widened with the increasing dose of N from 8.06 to 25.15 while in variants with an increased level of S in soil it ranged from 3.24 to 5.85 in the growth stage DC 20&ndash;29. Increasing doses of N widened the ratio N/P regardless to concentration of S in plants. In individual growth stages the ratio P/S was markedly narrowed by changing contents of S in soil. The highest yields were obtained in the variant with an optimum concentration of all elements in plants and S contents above 0.6% and/or about 0.4% in growth stages DC 20&ndash;29 and DC 31&ndash;39, respectively. The obtained yields demonstrated a highly significant effect of N and S on seed yields. At a low concentration of sulphur in plants the yield of seed increased only to the dose N<sub>3</sub>(i.e. 0.9 g N per pot); thereafter, it gradually decreased. An increased level of S in soil showed a positive effect on seed yields. Higher doses of N widened the ratio straw/seeds from 2.46 to 7.69; at higher levels of S in soil, an opposite trend was observed. In variants with a low content of S the number of branches and pods increased proportionally with increasing doses of N. On the other hand, increased levels of S reduced the number of branches and pods. At a low level of S in soil the total weight of seeds per pod decreased with the increased supply of N from 69.9 mg to 20.4 mg. At increased levels of S the weight of seeds per pod increased from 61.9 mg to 79.8 mg. Results of field experiments in four different localities corroborated a positive effect of S (in interaction with N) on its concentration in plants. The seed yield was significantly increased. In 2000, results from all localities were markedly influenced by climatic conditions; however average results of all experiments showed that S increased seed yields depending on the dose of N by 2.5 and 5.9%. An optimum nutrition of plants with all elements (including S) results in improved utilisation and increased yields.


Author(s):  
Arosha Maqbool ◽  
Shafaqat Ali ◽  
Muhammad Rizwan ◽  
Muhammad Saleem Arif ◽  
Tahira Yasmeen ◽  
...  

Heavy metal contamination is currently a major environmental concern, as most agricultural land is being polluted from municipal discharge. Among various other pollutants, cadmium (Cd), one of the most harmful heavy metals, enters into the food chain through the irrigation of crops with an industrial effluent. In the present study, a pot experiment was designed to assess the effect of different nitrogen (N)-fertilizer forms in the phytoremediation of Cd through Solanum nigrum L. Two types of N fertilizers (NH4NO3 and urea) were applied to the soil in different ratios (0:0, 100:0, 0:100, and 50:50 of NH4NO3 and urea, individually) along with different Cd levels (0, 25, and 50 mg kg−1). The plants were harvested 70 days after sowing the seeds in pots. Cadmium contamination significantly inhibited the growth of leaves and roots of S. nigrum plants. Cadmium contamination also induced oxidative stress; however, the application of N-fertilizers increased the plant biomass by inhibiting oxidative stress and enhancing antioxidants’ enzymatic activities. The greatest plant growth was observed in the urea-treated plants compared with the NH4NO3-treated plants. In addition, urea-fed plants also accumulated higher Cd concentrations than NH4NO3-fed plants. It is concluded that urea is helpful for better growth of S. nigrum under Cd stress. Thus, an optimum concentration of N-fertilizers might be effective in the phytoremediation of heavy metals through S. nigrum.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Gebregergis Zenawi ◽  
Amare Mizan

Sesame (Sesamum indicum L.) is grown mainly in the tropics. It is typically grown by smallholders with nearly all of its production in developing countries. It is an important source of high-quality oil and protein. Inappropriate use of fertilizers and monocropping are among the major production constraints. The objective of this paper is therefore to review the effect of N fertilizers on sesame growth and productivity. Growth and yield of sesame are greatly influenced by the application of N fertilizer. In most of the sesame-producing countries, optimum seed yield of sesame was obtained from application of 46–100 kg·N/ha. Adequate nitrogen fertilization also improves uptakes of other nutrients, particularly P and K and some micronutrients. Preemergence application of mobile nitrogen (urea) is less efficient due to losses. Mobile form of N fertilizer became available within two days for the crop. Split N applications where the N fertilizer is applied at different growth stages of the crop increases productivity. Side-dress application is one of the easiest ways to maximize nitrogen use efficiency. N fertilizers should be placed 3–5 cm deeper than the seeds and 5–10 cm apart from the plant for side dress but not far than 20 cm. Under optimal environmental conditions, nitrogen fertilizer has no effect on phonological traits but on the growth parameters. In the potential areas, application of 46–100 kg·N/ha gives maximum yield and lowering the application of N to less than 46 kg·N/ha in marginal areas is economical.


2016 ◽  
Vol 86 (3-4) ◽  
pp. 127-151 ◽  
Author(s):  
Zeshan Ali ◽  
Zhenbin Wang ◽  
Rai Muhammad Amir ◽  
Shoaib Younas ◽  
Asif Wali ◽  
...  

While the use of vinegar to fi ght against infections and other crucial conditions dates back to Hippocrates, recent research has found that vinegar consumption has a positive effect on biomarkers for diabetes, cancer, and heart diseases. Different types of vinegar have been used in the world during different time periods. Vinegar is produced by a fermentation process. Foods with a high content of carbohydrates are a good source of vinegar. Review of the results of different studies performed on vinegar components reveals that the daily use of these components has a healthy impact on the physiological and chemical structure of the human body. During the era of Hippocrates, people used vinegar as a medicine to treat wounds, which means that vinegar is one of the ancient foods used as folk medicine. The purpose of the current review paper is to provide a detailed summary of the outcome of previous studies emphasizing the role of vinegar in treatment of different diseases both in acute and chronic conditions, its in vivo mechanism and the active role of different bacteria.


1985 ◽  
Vol 110 (3) ◽  
pp. 329-337 ◽  
Author(s):  
G. A. Schuiling ◽  
H. Moes ◽  
T. R. Koiter

Abstract. The effect of pretreatment in vivo with oestradiol benzoate on in vitro secretion of LH and FSH was studied in long-term ovariectomized (OVX) rats both at the end of a 5-day continuous in vivo pretreatment with LRH and 4-days after cessation of such LRH pretreatment. Rats were on day 0 sc implanted with osmotic minipumps which released LRH at the rate of 250 ng/h. Control rats were implanted with a piece of silicone elastomer with the dimensions of a minipump. On days 2 and 4 the rats were injected with either 3 μg EB or with oil. On day 5 part of the rats were decapitated and the in vitro autonomous (i.e. non-LRH-stimulated) and 'supra-maximally' LRHstimulated release of LH and FSH was studied using a perifusion system. From other rats the minipumps were removed on day 5 and perifusion was performed on day 9. On the 5th day of the in vivo LRH pretreatment the pituitary LH/FSH stores were partially depleted; the pituitaries of the EB-treated rats more so than those of the oil-injected rats. EB alone had no significant effect on the content of the pituitary LH- and FSH stores. On day 9, i.e. 4 days after removal of the minipumps, the pituitary LH and FSH contents had increased in both the oil- and the EB injected rats, but had not yet recovered to control values. In rats not subjected to the 5-days pretreatment with LRH EB had a positive effect on the supra-maximally LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. EB had no effect on the non-stimulated secretion of FSH. After 5 days of in vivo pretreatment with LRH only, the in vitro non-stimulated and supra-maximally LRH-stimulated secretion of both LH and FSH were strongly impaired, the effect correlating well with the LRH-induced depletion of the pituitary LH/FSH stores. In such LRH-pretreated rats EB had on day 5 a negative effect on the (already depressed) LRH-stimulated secretion of LH (not on that of FSH). EB had no effect on the non-stimulated LH/FSH secretion. It could be demonstrated that the negative effect of the combined LRH/EB pretreatment was mainly due to the depressing effect of this treatment on the pituitary LH and FSH stores: the effect of oestradiol on the pituitary LRH-responsiveness (release as related to pituitary gonadotrophin content) remained positive. In LRH-pretreated rats, however, this positive effect of EB was smaller than in rats not pretreated with LRH. Four days after removal of the minipumps there was again a positive effect of EB on the LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. The positive effect of EB on the pituitary LRH-responsiveness was as strong as in rats which had not been exposed to exogenous LRH. The non-stimulated secretion of FSH was again not affected by EB. The results demonstrate that the effect of EB on the oestrogen-sensitive components of gonadotrophin secretion consists of two components: an effect on the pituitary LRH-responsiveness proper, and an effect on the pituitary LH/FSH stores. The magnitude of the effect of EB on the LRH-responsiveness is LRH dependent: it is very weak (almost zero) in LRH-pretreated rats, but strong in rats not exposed to LRH as well as in rats of which the LRH-pretreatment was stopped 4 days previously. Similarly, the effect of EB on the pituitary LH and FSH stores is LRH-dependent: in the absence of LRH, EB has no influence on the contents of these stores, but EB can potentiate the depleting effect of LRH on the LH/FSH-stores. Also this effect disappear after cessation of the LRH-pretreatment.


2019 ◽  
Vol 16 (8) ◽  
pp. 688-697
Author(s):  
Ravinder Verma ◽  
Deepak Kaushik

: In vitro lipolysis has emerged as a powerful tool in the development of in vitro in vivo correlation for Lipid-based Drug Delivery System (LbDDS). In vitro lipolysis possesses the ability to mimic the assimilation of LbDDS in the human biological system. The digestion medium for in vitro lipolysis commonly contains an aqueous buffer media, bile salts, phospholipids and sodium chloride. The concentrations of these compounds are defined by the physiological conditions prevailing in the fasted or fed state. The pH of the medium is monitored by a pH-sensitive electrode connected to a computercontrolled pH-stat device capable of maintaining a predefined pH value via titration with sodium hydroxide. Copenhagen, Monash and Jerusalem are used as different models for in vitro lipolysis studies. The most common approach used in evaluating the kinetics of lipolysis of emulsion-based encapsulation systems is the pH-stat titration technique. This is widely used in both the nutritional and the pharmacological research fields as a rapid screening tool. Analytical tools for the assessment of in vitro lipolysis include HPLC, GC, HPTLC, SEM, Cryo TEM, Electron paramagnetic resonance spectroscopy, Raman spectroscopy and Nanoparticle Tracking Analysis (NTA) for the characterization of the lipids and colloidal phases after digestion of lipids. Various researches have been carried out for the establishment of IVIVC by using in vitro lipolysis models. The current publication also presents an updated review of various researches in the field of in vitro lipolysis.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1180
Author(s):  
Agnieszka Lewińska

Process approaches and intensification technological processes are integrated parts of available devices, which have a positive effect on the parameters of the obtained products. Nanoemulsions as delivery carriers are becoming more popular and there is a real need to increase the possibilities of formulation designing and engineering. Therefore, preparations of oil-in-water nanoemulsion with encapsulated cannabidiol (CBD) as oil phase were carried out in two ways: sonication method and two-stage high-pressure homogenization. The provided analysis showed spherical morphology and much larger sizes and polydispersity of nanoemulsions obtained by the sonication approach. The size of nanodroplets was from 216 nm up to 1418 nm for sonication, whereas for homogenization 128–880 nm. Additionally, it was observed that a proportionally higher percentage of surfactin resulted in a higher value of the Zeta potential. The formulations were found to be stable for at least 30 days. The in vitro experiments performed on human skin cell lines (HaCaT keratinocytes and normal dermal NHDF fibroblasts), and in vivo topical tests on probants established the biocompatibility of nanoemulsions with CBD. The last stage exhibits reduced discoloration and a higher degree of hydration by the selected systems with CBD and, thus indicating this nanoformulation as useful in cosmetics applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 979
Author(s):  
Patricia Garcia-Garcia ◽  
Ricardo Reyes ◽  
José Antonio Rodriguez ◽  
Tomas Martín ◽  
Carmen Evora ◽  
...  

Biomaterials-mediated bone formation in osteoporosis (OP) is challenging as it requires tissue growth promotion and adequate mineralization. Based on our previous findings, the development of scaffolds combining bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 10 (MMP-10) shows promise for OP management. To test our hypothesis, scaffolds containing BMP-2 + MMP-10 at variable ratios or BMP-2 + Alendronate (ALD) were prepared. Systems were characterized and tested in vitro on healthy and OP mesenchymal stem cells and in vivo bone formation was studied on healthy and OP animals. Therapeutic molecules were efficiently encapsulated into PLGA microspheres and embedded into chitosan foams. The use of PLGA (poly(lactic-co-glycolic acid)) microspheres as therapeutic molecule reservoirs allowed them to achieve an in vitro and in vivo controlled release. A beneficial effect on the alkaline phosphatase activity of non-OP cells was observed for both combinations when compared with BMP-2 alone. This effect was not detected on OP cells where all treatments promoted a similar increase in ALP activity compared with control. The in vivo results indicated a positive effect of the BMP-2 + MMP-10 combination at both of the doses tested on tissue repair for OP mice while it had the opposite effect on non-OP animals. This fact can be explained by the scaffold’s slow-release rate and degradation that could be beneficial for delayed bone regeneration conditions but had the reverse effect on healthy animals. Therefore, the development of adequate scaffolds for bone regeneration requires consideration of the tissue catabolic/anabolic balance to obtain biomaterials with degradation/release behaviors suited for the existing tissue status.


2009 ◽  
Vol 297 (6) ◽  
pp. C1358-C1367 ◽  
Author(s):  
Gerald J. Atkins ◽  
Katie J. Welldon ◽  
Asiri R. Wijenayaka ◽  
Lynda F. Bonewald ◽  
David M. Findlay

The vitamin K family members phylloquinone (vitamin K1) and the menaquinones (vitamin K2) are under study for their roles in bone metabolism and as potential therapeutic agents for skeletal diseases. We have investigated the effects of two naturally occurring homologs, phytonadione (vitamin K1) and menatetrenone (vitamin K2), and those of the synthetic vitamin K, menadione (vitamin K3), on human primary osteoblasts. All homologs promoted in vitro mineralization by these cells. Vitamin K1-induced mineralization was highly sensitive to warfarin, whereas that induced by vitamins K2 and K3 was less sensitive, implying that γ-carboxylation and other mechanisms, possibly genomic actions through activation of the steroid xenobiotic receptor, are involved in the effect. The positive effect on mineralization was associated with decreased matrix synthesis, evidenced by a decrease from control in expression of type I collagen mRNA, implying a maturational effect. Incubation in the presence of vitamin K2 or K3 in a three-dimensional type I collagen gel culture system resulted in increased numbers of cells with elongated cytoplasmic processes resembling osteocytes. This effect was not warfarin sensitive. Addition of calcein to vitamin K-treated cells revealed vitamin K-dependent deposition of mineral associated with cell processes. These effects are consistent with vitamin K promoting the osteoblast-to-osteocyte transition in humans. To test whether vitamin K may also act on mature osteocytes, we tested the effects of vitamin K on MLO-Y4 cells. Vitamin K reduced receptor activator of NF-κB ligand expression relative to osteoprotegerin by MLO-Y4 cells, an effect also seen in human cultures. Together, our findings suggest that vitamin K promotes the osteoblast-to-osteocyte transition, at the same time decreasing the osteoclastogenic potential of these cells. These may be mechanisms by which vitamin K optimizes bone formation and integrity in vivo and may help explain the net positive effect of vitamin K on bone formation.


Sign in / Sign up

Export Citation Format

Share Document