scholarly journals CircNFIX promotes progression of pituitary adenoma via CCNB1 by sponging miR-34a -5p

2020 ◽  
Author(s):  
Jianhua Cheng ◽  
Ding Nie ◽  
Bin Li ◽  
SongBai Gui ◽  
ChuZhong Li ◽  
...  

Abstract Background: Previous studies have shown that CCNB1 affects the invasiveness of pituitary adenomas, and it is of great significance to find the upstream mechanism of regulating CCNB1.Methods: RT-qPCR was used to measure the expression of circNFIX and miR-34a-5p in pituitary adenoma tissues. Western blotting was used to detect the expression of CCNB1 in pituitary adenomas. The relationship between circNFIX and miR-34a-5p was determined using dual-luciferase reporter assays. Pituitary adenoma cell invasion, migration and proliferation were analyzed using transwell, colony formation and CCK-8 assays, respectively. Additionally, xenograft experiments were performed to determine the effect of circNFIX silencing on tumor growth. Results: In pituitary adenoma tissues, the expression of circNFIX (has-circ_0005660) and CCNB1 were upregulated, while miR-34a-5p expression was downregulated. The silencing of circNFIX or overexpression of miR-34a-5p inhibited cell invasion, migration and proliferation. Inhibition of miR-34a-5p expression reversed the inhibitory effect of circNFIX silencing on the progression of pituitary adenoma. Conclusions: CircNFIX affects cell invasion, migration, and proliferation in pituitary adenomas by sponging miR-34a-5p through CCNB1. Therefore, circNFIX is expected to serve as a potential target for the treatment of pituitary adenomas.

Author(s):  
Minglin Liang ◽  
Hui Chen ◽  
Jie Min

Endometrial cancer is a common gynecological malignancy, and the incidence of this disease has increased in recent years. Recently, some studies suggested that the expression of miR-379-5p suppressed the metastasis of breast cancer cells. However, whether the expression of miR-379-5p could affect the proliferation, migration and invasion of endometrial cancer is unclear. In this study, we established miR-379-5p overexpression and miR-379-5p inhibition in endometrial cancer cells. Next, EdU and colony formation assays were performed to measure proliferation of endometrial cancer cells. Wound healing and transwell assays were carried out to examine the migration and invasion of these cells. Then, luciferase reporter assay was performed to test the relationship between miR-379-5p and ROR1. Finally, we overexpressed ROR1 in miR-379-5p overexpressing endometrial cancer cells. Colony formation, wound healing and transwell assays were used to measure proliferation, migration and invasion of these cells. The results showed that overexpression of miR-379-5p repressed proliferation, migration and invasion of endometrial cancer cells. Higher levels of miR-379-5p repressed expression of N-cadherin, Vimentin and ZEB1. Overexpression of miR-379-5p also promoted expression of E-cadherin and ZO-1. In addition, miR-379-5p targeted and suppressed expression of ROR1. Overexpression of ROR1 abolished the inhibitory effect of miR-379-5p on proliferation, migration, invasion and EMT of endometrial cancer cells. All of these results indicated that miR-379-5p suppressed proliferation, migration and invasion of endometrial cancer cells by inhibiting the expression of ROR1 and the EMT process.


2020 ◽  
Vol 10 (12) ◽  
pp. 1800-1806
Author(s):  
Yali Lai ◽  
Jiajia Liu

Rationale: Parkinson?s disease (PD) is a heterogeneous neurodegenerative disorder in which microRNAs are significantly involved. Previous studies have reported that MiR-153 might inhibit the progression of PD. However, the biological roles of MiR-153 and its underlying molecular mechanism in PD remain unclear. Methods: In the present study, MES23.5 cells were treated with gradient concentration of neurotoxin 1-Methyl-4-Phenyl-Pyridinium (MPP+) to construct the PD model. Quantitative real-time PCR (qRT-PCR) was performed to detect the expressions of MiR-153 and SNAI1. Western blotting (WB) measured the expressions of SNAI1, Nrf2 and HO-1. The relationship between MiR-153 and SNAI1 was analyzed by luciferase reporter assay. In addition, cell proliferation and apoptosis were examined using cell counting kit-8 (CCK-8) and TUNEL assays. Results: MiR-153 expression was decreased after MPP+ treatment in neurons cells and overexpression of MiR-153 significantly inhibited MPP+-inhibited viability. Moreover, dual-luciferase reporter assays showed that SNAI1 was a target of MiR-153 and there was a negative correlation between them. Overexpression of SNAI1 attenuated the inhibitory effect of MiR-153 overexpression on MPP+-induced apoptosis. In addition, overexpression of MiR-153 significantly increased the expression levels of Nrf2 and HO-1. Conclusion: In summary, the results suggest that MiR-153 inhibits MPP+-induced apoptosis via activating Nrf2/HO-1 pathway by targeting SNAI1 in PD, indicating that MiR-153 is a potential molecular target for PD treatment.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Huayao Zhang ◽  
Jingwen Peng ◽  
Jianguo Lai ◽  
Haiping Liu ◽  
Zhiyuan Zhang ◽  
...  

Abstract Breast cancer (BC) is a common cancer with poor survival. The present study aimed to explore the effect of miR-940 on the process of BC cells and its target gene FOXO3. The expression of miR-940 was assessed in BC tissues and cells using qRT-PCR. Furthermore, the correlation between miR-940 and prognosis of BC patients from the TCGA database was analyzed. CCK8 assays and colony formation assays were used to explore the effect of miR-940 on BC cell proliferation. The invasion abilities were detected by transwell assays. Luciferase reporter assay was performed to scrutinize the relationship between miR-940 and FOXO3. Finally, rescue experiments were performed through FOXO3 down-regulation and miR-940 inhibitors by using CCK8 assays, colony formation assays and transwell assays. miR-940 was significantly up-regulated in BC cells and tissues. In addition, the high level of miR-940 correlated with poor survival of BC patients (P=0.023). CCK8 assays, colony formation assays and transwell assays indicated that miR-940 promoted the proliferation and invasion abilities of BC cells. The luciferase reporter assay suggested that miR-940 directly targeted FOXO3. Moreover, we found that the effect of si-FOXO3 was rescued by miR-940 inhibitors in BC cells. miR-940 may promote the proliferation and invasion abilities of BC cells by targeting FOXO3. Our study suggested that miR-940 could be a novel molecular target for therapies against BC.


2020 ◽  
Author(s):  
Liang Liu ◽  
Xiaojian Li ◽  
Heming Wu ◽  
Yong Tang ◽  
Xiang Li ◽  
...  

Abstract Background Glioma is the most common primary tumour of the central nervous system and is considered one of the greatest challenges for neurosurgery. Mounting evidence has shown that lncRNAs participate in various biological processes of tumours, including glioma. This study aimed to reveal the role and relevant mechanism of COX10-AS1 in glioma. Methods The expression of COX10-AS1, miR-641 and E2F6 was measured by qRT-PCR and/or western blot. Clone formation assays, EdU assays, Transwell assays and tumour xenograft experiments were performed to evaluate the effects of COX10-AS1, miR-641 and E2F6 on glioma proliferation, migration and invasion. Luciferase reporter assays, RNA pull-down assays and ChIP assays were conducted to analyse the relationship among COX10-AS1, miR-641 and E2F6. Results First, we demonstrated that COX10-AS1 was upregulated in glioma tissues and cell lines, which was related to the grade of glioma and patient survival. Next, through functional assays, we found that COX10-AS1 influenced the proliferation, migration and invasion of glioma cell lines. Then, with the help of bioinformatics analysis, we confirmed that COX10-AS1 regulated glioma by acting as a sponge of miR-641 to regulate E2F6. Moreover, further study indicated that E2F6 could promote COX10-AS1 expression by binding to its promoter region. Conclusions COX10-AS1 acts as an oncogene in combination with COX10-AS1/miR-641/E2F6 in glioma, which may be beneficial to the diagnosis and treatment of glioma.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jianhua Wang ◽  
Ping Xu ◽  
Yanping Hao ◽  
Tingting Yu ◽  
Limin Liu ◽  
...  

Abstract Background Gastric cancer (GC) has an unwelcoming prognosis when diagnosed at an advanced stage. The purpose of this study was to examine the expression of myosin heavy chain 11 (MYH11) in GC and mechanisms related. Methods The MYH11 expression in GC was investigated via the SangerBox platform. MYH11 expression in GC tissues and cell lines was examined by immunohistochemistry, RT-qPCR, and western blot. The relationship between MYH11 expression and patients’ prognosis was analyzed. The effects of MYH11 on the biological behaviors of GC cells were investigated by gain-of-function experiments. Bioinformatics analysis was used to find genes with relevance to MYH11 expression in GC. The relationship was verified by luciferase and ChIP-qPCR assays, followed by rescue assay validation. The causes of MYH11 downregulation in GC were verified by quantitative methylation-specific PCR. Finally, the effect of MYH11 on tumor growth was examined. Results MYH11 was downregulated in GC and predicted poor prognoses. MYH11 reverted the malignant phenotype of GC cells. MYH11 repressed the TNFRSF14 expression by binding to the TNFRSF14 promoter. TNFRSF14 reversed the inhibitory effect of MYH11 on the malignant phenotype of GC cells. The methylation of the MYH11 promoter was elevated in GC, which was correlated with the elevated DNMT3B in GC. Overexpression of DNMT3B repressed transcription of MYH11 by promoting its methylation. Also, MYH11 upregulation inhibited tumor growth. Conclusion DNMT3B inhibits MYH11 expression by promoting its DNA methylation, thereby attenuating the repressive effect of MYH11 on the transcriptional of TNFRSF14 and promoting the progression of GC.


2021 ◽  
Author(s):  
Aixin Li ◽  
Kaitao Zhao ◽  
Bei Zhang ◽  
Rong Hua ◽  
Yujie Fang ◽  
...  

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is bringing an unprecedented health crisis to the world. To date, our understanding of the interaction between SARS-CoV-2 and host innate immunity is still limited. Previous studies reported that SARS-CoV-2 non-structural protein 12 (NSP12) was able to suppress interferon-β (IFN-β) activation in IFN-β promoter luciferase reporter assays, which provided insights into the pathogenesis of COVID-19. In this study, we demonstrated that IFN-β promoter mediated luciferase activity was reduced during co-expression of NSP12. However, we could show NSP12 did not affect IRF3 or NF-κB activation. Moreover, IFN-β production induced by Sendai virus (SeV) infection or other stimulus was not affected by NSP12 at mRNA or protein level. Additionally, type I IFN signaling pathway was not affected by NSP12, as demonstrated by the expression of interferon stimulated genes (ISGs). Further experiments revealed that different experiment systems, including protein tags and plasmid backbones, could affect the readouts of IFN-β promoter luciferase assays. In conclusion, unlike previously reported, our study showed SARS-CoV-2 NSP12 protein is not an IFN-β antagonist. It also rings the alarm on the general usage of luciferase reporter assays in studying SARS-CoV-2. Importance Previous studies investigated the interaction between SARS-CoV-2 viral proteins and interferon signaling, and proposed that several SARS-CoV-2 viral proteins, including NSP12, could suppress IFN-β activation. However, most of these results were generated from IFN-β promoter luciferase reporter assay, and have not been validated functionally. In our study, we found that although NSP12 could suppress IFN-β promoter luciferase activity, it showed no inhibitory effect on IFN-β production or it downstream signaling. Further study revealed that contradictory results could generated from different experiment systems. On one hand, we demonstrated that SARS-CoV-2 NSP12 could not suppress IFN-β signaling. On the other hand, our study suggests that cautions need to be taken with the interpretation of SARS-CoV-2 related luciferase assays.


2021 ◽  
Vol 12 ◽  
Author(s):  
Heyuan Zhang ◽  
Nanhui Chen ◽  
Zhihai Deng ◽  
Yang Mai ◽  
Limin Deng ◽  
...  

Prostate cancer (PCa) is a serious disease that affects men’s health. To date, no effective and long-lasting treatment option for this condition is available in clinical practice. ANT2 is highly expressed in a variety of hormone-related cancers, but its relationship and regulatory mechanism with PCa are unclear. In this study, we found that ANT2 expression was significantly upregulated in PCa tissues relative to control samples. Genetic knockdown of ANT2 effectively inhibited, while overexpression promoted, proliferation, migration, and invasion of PCa cells. In addition, miR-137 expression was reduced in prostate cancer tissues relative to control tissues. We identified a regulatory site for miR-137 in the 3′-UTR of ANT2 mRNA; luciferase reporter assays indicated that ANT2 is a direct target gene for miR-137. Transfecting cells with miR-137 mimics and/or an ANT2-encoding plasmid revealed that ANT2 promotes proliferation, migration, and invasion of PCa, whereas co-expression of miR-137 mimics inhibited these behaviors. These observations suggest that miR-137 mimics inhibit development of PCa by antagonizing expression of ANT2. Furthermore, tumorigenic assays in nude mice showed that miR-137 inhibitors abolished the inhibitory effect of ANT2 knockdown on PCa tumor growth. Collectively, our findings suggest that ANT2, a target gene of miR-137, is intimately involved in development of PCa, providing new evidence for the mechanism underlying pathogenesis of PCa as well as new options for targeted therapy.


Author(s):  
Caifeng Yue ◽  
Jierong Chen ◽  
Ziyue Li ◽  
Laisheng Li ◽  
Jugao Chen ◽  
...  

Abstract Background Colorectal cancer (CRC) is one of the frequently occurred malignancies in the world. To date, several onco-microRNAs (miRNAs or miRs), including miR-96, have been identified in the pathogenesis of CRC. In the present study, we aimed to corroborate the oncogenic effect of miR-96 on CRC and to identify the specific mechanisms related to AMPKα2/FTO/m6A/MYC. Methods RT-qPCR and Western blot analysis were performed to examine the expression pattern of miR-96, AMPKα2, FTO and MYC in the clinical CRC tissues and cells. The relationship between miR-96 and AMPKα2 was then predicted using in silico analysis and identified by dual-luciferase reporter assay. Gain- or loss-of-function approaches were manipulated to evaluate the modulatory effects of miR-96, AMPKα2, FTO and MYC on cell growth, cycle progression and apoptosis. The mechanism of FTO-mediated m6A modification of MYC was analyzed via Me-RIP and PAR-CLIP analysis. The mediatory effects of miR-96 antagomir on cancerogenesis were validated in vivo. Results miR-96, FTO and MYC were upregulated, while AMPKα2 was downregulated in CRC tissues and cells. miR-96 could down-regulate AMPKα2, which led to increased expression of FTO and subsequent upregulated expression of MYC via blocking its m6A modification. This mechanism was involved in the pro-proliferative and anti-apoptotic roles of miR-96 in CRC cells. Besides, down-regulation of miR-96 exerted inhibitory effect on tumor growth in vivo. Conclusions Taken together, miR-96 antagomir could potentially retard the cancerogenesis in CRC via AMPKα2-dependent inhibition of FTO and blocking FTO-mediated m6A modification of MYC, highlighting novel mechanisms associated with colorectal cancerogenesis.


Author(s):  
Yong Zhang ◽  
Liangsheng Miao ◽  
Huijuan Zhang ◽  
Gang Wu ◽  
Jianrui Lv

IntroductionThis study aimed to investigate the biological role of microRNA 93 (miR-93), a novel tumor-related miRNA, in human hepatocellular carcinoma (HCC) and elucidate the potential molecular mechanisms involved.Material and methodsQuantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression of miR-93 in HCC tissues and cell lines. The log-rank test and Kaplan-Meier survival analysis were performed to evaluate the relationship between miR-93 expression and overall survival. MTT assay, colony formation assay, Transwell migration and invasion assays were carried out to exam cell proliferation, colony formation, migration and invasion, respectively. Murine xenograft models were established to the effect of miR-93 on tumor growth in vivo. TargetScan online software was applied to predict the potential target of miR-93. Luciferase reporter assays were used to validate the direct binding of miR-93 and its putative target.ResultsHere we found that miR-93 was significantly down-regulated in HCC tissues and cell lines. Patients with decreased miR-93 expression had a significantly shorter overall survival. Functional investigations demonstrated miR-93 over-expression suppressed HCC cell proliferation, weakened clonogenic ability, and slowed down cell migration and invasion; whereas miR-93 depletion facilitated HCC cell proliferation, colony formation, cell migration and invasion. MiR-93 over-expression retarded tumor growth in vivo. Luciferase reporter assay and rescue assay revealed that zinc finger protein 322 (ZNF322) was a direct target of miR-93 and mediated the inhibitory effects of miR-93 on HCC cell proliferation and motility.ConclusionsOur data may provide some evidence for miR-93/ZNF322 axis a candidate therapeutic target for HCC.


Sign in / Sign up

Export Citation Format

Share Document