scholarly journals Protective effects of ginkgolide on a cellular model of Alzheimer’s disease via suppression of the NF-κB signaling pathway

Author(s):  
Tiantong Niu ◽  
He Yin ◽  
Baolei Xu ◽  
Tingting Yang ◽  
Huiqin Li ◽  
...  

Abstract NF-κB signaling has been reported to play a key regulatory role in the pathogenesis of Alzheimer’s disease (AD). The purpose of this study is to investigate the effects of ginkgolide on cell viability in an AD cellular model involving an APP/PS1 double gene-transfected HEK293 cell line (APP/PS1-HEK293) and further explored the mechanisms of action related to NF-κB signaling. The optimal time point and concentration of ginkgolide for cell proliferation were screened using a cell counting kit-8 assay. Based on the results, an in vitro study was performed by co-culture of APP/PS1-HEK293 with different dosages of ginkgolide, followed by an enzyme-linked immunosorbent assay to measure the levels of supernatant tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, as well as western blotting and real-time polymerase chain reaction to detect intracellular protein and mRNA expression of NF-κB p65, IκBa, Bcl-2 and Bax. APP/PS1-HEK293 cells exhibited the highest cell viability at a concentration of 100 µg/ml after 48 h of treatment with ginkgolide. The supernatant levels of TNF-α, IL-1β and IL-6 in the high-dosage ginkgolide-treated groups were lower than those in the control group. Compared with the control group, there were decreased intracellular protein and mRNA expression of NF-κB p65 and Bax, but increased protein and mRNA expression of IκBa in both high-dosage and low-dosage group. Ginkgolide may enhance cell viability, indicative of its neuroprotective effects on AD, at least partially via suppression of the NF-κB signaling pathway involving anti-apoptosis and anti-inflammation mechanisms. Therefore, ginkgolide might be a promising therapeutic agent against AD.

2020 ◽  
Vol 48 (08) ◽  
pp. 1803-1819
Author(s):  
Yong Ho Ku ◽  
Jae Hui Kang ◽  
Hyun Lee

Alzheimer’s disease (AD) is a neurodegenerative disease and is characterized by the deposition of the [Formula: see text]-Amyloid peptide ([Formula: see text]A), which causes the inflammation of neurons. Bee venom (BV) elicits a strong anti-inflammatory response, and therefore we conducted an in vitro experiment to study the efficacy of BV in an AD cellular model. To mimic AD, the U87MG cell line was incubated for 168 hours with 2.5 [Formula: see text]M [Formula: see text]A. Changes were confirmed by microscopy, and peptides were measured under stain-free conditions using homo-tomography. Sulforhodamine B analysis was performed to analyze the cell viability. Real-Time quantitative polymerase chain reaction (qPCR) analysis was conducted to analyze mRNA expression levels of pro-inflammatory cytokines (NF-[Formula: see text]B, COX-2, TNF-[Formula: see text], IL-1), and Western blot was performed to measure the Caspase-3 protein levels. BV showed no cytotoxicity at concentrations below 10 [Formula: see text]g/mL. The NF-[Formula: see text]B mRNA levels were not significantly different between the BV group and the control group. The amount of [Formula: see text]A accumulation in the BV group decreased significantly. The mRNA expression levels of COX-2, TNF-[Formula: see text], and IL-1 were significantly reduced using 10 [Formula: see text]g/mL of BV compared to those in the control group. Additionally, Caspase-3 levels were also reduced compared to those of the control group when BV was used at a concentration of 10 [Formula: see text]g/mL. BV could inhibit apoptosis and inflammatory responses in an AD cellular model. In addition, it prevented cell accumulation of [Formula: see text]A, an important pathogenic mechanism in AD.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Naphatthakarn Kerdsaeng ◽  
Sittiruk Roytrakul ◽  
Suwannee Chanprasertyothin ◽  
Piangporn Charernwat ◽  
Sirintorn Chansirikarnjana ◽  
...  

Objectives. This study compares glycoproteomes in Thai Alzheimer’s disease (AD) patients with those of cognitively normal individuals. Methods. Study participants included outpatients with clinically diagnosed AD ( N = 136 ) and healthy controls without cognitive impairment ( N = 183 ). Blood samples were collected from all participants for biochemical analysis and for Apolipoprotein   E (APOE) genotyping by real-time TaqMan PCR assays. Comparative serum glycoproteomic profiling by liquid chromatography-tandem mass spectrometry was then performed to identify differentially abundant proteins with functional relevance. Results. Statistical differences in age, educational level, and APOE ɛ3/ɛ4 and ɛ4/ɛ4 haplotype frequencies were found between the AD and control groups. The frequency of the APOE ɛ4 allele was significantly higher in the AD group than in the control group. In total, 871 glycoproteins were identified, including 266 and 259 unique proteins in control and AD groups, respectively. There were 49 and 297 upregulated and downregulated glycoproteins, respectively, in AD samples compared with the controls. Unique AD glycoproteins were associated with numerous pathways, including Alzheimer’s disease-presenilin pathway (16.6%), inflammation pathway mediated by chemokine and cytokine signaling (9.2%), Wnt signaling pathway (8.2%), and apoptosis signaling pathway (6.7%). Conclusion. Functions and pathways associated with protein-protein interactions were identified in AD. Significant changes in these proteins can indicate the molecular mechanisms involved in the pathogenesis of AD, and they have the potential to serve as AD biomarkers. Such findings could allow us to better understand AD pathology.


2019 ◽  
Vol 16 (9) ◽  
pp. 834-835
Author(s):  
Petter Järemo ◽  
Alenka Jejcic ◽  
Vesna Jelic ◽  
Tasmin Shahnaz ◽  
Homira Behbahani ◽  
...  

Background: Alzheimer’s Disease (AD) features the accumulation of β-amyloid in erythrocytes. The subsequent red cell damage may well affect their oxygen-carrying capabilities. 2,3- diphosphoglycerate (2,3-DPG) binds to the hemoglobin thereby promoting oxygen release. It is theorized that 2,3-DPG is reduced in AD and that the resulting hypoxia triggers erythropoietin (EPO) release. Methods & Objective: To explore this theory, we analyzed red cell 2,3-DPG content and EPO in AD, mild cognitive impairment, and the control group, subjective cognitive impairment. Results: We studied (i) 2,3-DPG in red cells, and (ii) circulating EPO in AD, and both markers were unaffected by dementia. Disturbances of these oxygen-regulatory pathways do not appear to participate in brain hypoxia in AD.


2020 ◽  
Vol 17 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Dan Wang ◽  
Zhifu Fei ◽  
Song Luo ◽  
Hai Wang

Objectives: Alzheimer's disease (AD), also known as senile dementia, is a common neurodegenerative disease characterized by progressive cognitive impairment and personality changes. Numerous evidences have suggested that microRNAs (miRNAs) are involved in the pathogenesis and development of AD. However, the exact role of miR-335-5p in the progression of AD is still not clearly clarified. Methods: The protein and mRNA levels were measured by western blot and RNA extraction and quantitative real-time PCR (qRT-PCR), respectively. The relationship between miR-335-5p and c-jun-N-terminal kinase 3 (JNK3) was confirmed by dual-luciferase reporter assay. SH-SY5Y cells were transfected with APP mutant gene to establish the in vitro AD cell model. Flow cytometry and western blot were performed to evaluate cell apoptosis. The APP/PS1 transgenic mice were used as an in vivo AD model. Morris water maze test was performed to assess the effect of miR- 335-5p on the cognitive deficits in APP/PS1 transgenic mice. Results: The JNK3 mRNA expression and protein levels of JNK3 and β-Amyloid (Aβ) were significantly up-regulated, and the mRNA expression of miR-335-5p was down-regulated in the brain tissues of AD patients. The expression levels of miR-335-5p and JNK3 were significantly inversely correlated. Further, the dual Luciferase assay verified the relationship between miR-335- 5p and JNK3. Overexpression of miR-335-5p significantly decreased the protein levels of JNK3 and Aβ and inhibited apoptosis in SH-SY5Y/APPswe cells, whereas the inhibition of miR-335-5p obtained the opposite results. Moreover, the overexpression of miR-335-5p remarkably improved the cognitive abilities of APP/PS1 mice. Conclusion: The results revealed that the increased JNK3 expression, negatively regulated by miR-335-5p, may be a potential mechanism that contributes to Aβ accumulation and AD progression, indicating a novel approach for AD treatment.


2019 ◽  
Vol 16 (3) ◽  
pp. 251-260 ◽  
Author(s):  
Elaine Wan Ling Chan ◽  
Emilia Tze Ying Yeo ◽  
Kelly Wang Ling Wong ◽  
Mun Ling See ◽  
Ka Yan Wong ◽  
...  

<P>Background: Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder that eventually leads to severe cognitive impairment. Although the exact etiologies of AD still remain elusive, increasing evidence suggests that neuroinflammation cascades mediated by microglial cells are associated with AD. Piper sarmentosum Roxb. (PS) is a medicinal plant reported to possess various biological properties, including anti-inflammatory, anti-psychotic and anti-oxidant activity. However, little is known about the anti-inflammatory activity of PS roots despite their traditional use to treat inflammatory- mediated ailments. Objective: This study aimed to evaluate the anti-inflammatory and neuroprotective properties of extracts obtained from the roots of PS against beta-amyloid (Aβ)-induced microglial toxicity associated with the production of pro-inflammatory mediators. Method: BV2 microglial cells were treated with hexane (RHXN), dichloromethane (RDCM), ethyl acetate (REA) and methanol (RMEOH) extracts of the roots of PS prior to activation by Aβ. The production and mRNA expression of pro-inflammatory mediators were evaluated by Griess reagent, ELISA kits and RT-qPCR respectively. The phosphorylation status of p38α MAPK was determined via western blot assay. BV2 conditioned medium was used to treat SH-SY5Y neuroblastoma cells and the neuroprotective effect was assessed using MTT assay. Results: PS root extracts, in particular RMEOH significantly attenuated the production and mRNA expression of IL-1β, IL-6 and TNF-α in Aβ-induced BV2 microglial cells. In addition, RHXN, REA and RMEOH extracts significantly reduced nitric oxide (NO) level and the inhibition of NO production was correlated with the total phenolic content of the extracts. Further mechanistic studies suggested that PS root extracts attenuated the production of cytokines by regulating the phosphorylation of p38α MAPK in microglia. Importantly, PS root extracts have protective effects against Aβ-induced indirect neurotoxicity either by inhibiting the production of NO, IL-1β, IL-6, and TNF-α in BV2 cells or by protecting SHSY5Y cells against these inflammatory mediators. Conclusions: These findings provided evidence that PS root extracts confer neuroprotection against Aβ- induced microglial toxicity associated with the production of pro-inflammatory mediators and may be a potential therapeutic agent for inflammation-related neurological conditions including Alzheimer’s disease (AD).</P>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Patricia Yuste-Checa ◽  
Victoria A. Trinkaus ◽  
Irene Riera-Tur ◽  
Rahmi Imamoglu ◽  
Theresa F. Schaller ◽  
...  

AbstractSpreading of aggregate pathology across brain regions acts as a driver of disease progression in Tau-related neurodegeneration, including Alzheimer’s disease (AD) and frontotemporal dementia. Aggregate seeds released from affected cells are internalized by naïve cells and induce the prion-like templating of soluble Tau into neurotoxic aggregates. Here we show in a cellular model system and in neurons that Clusterin, an abundant extracellular chaperone, strongly enhances Tau aggregate seeding. Upon interaction with Tau aggregates, Clusterin stabilizes highly potent, soluble seed species. Tau/Clusterin complexes enter recipient cells via endocytosis and compromise the endolysosomal compartment, allowing transfer to the cytosol where they propagate aggregation of endogenous Tau. Thus, upregulation of Clusterin, as observed in AD patients, may enhance Tau seeding and possibly accelerate the spreading of Tau pathology.


2017 ◽  
Vol 9 ◽  
pp. 117957351770927 ◽  
Author(s):  
Rudy Chang ◽  
Kei-Lwun Yee ◽  
Rachita K Sumbria

Tumor necrosis factor α (TNF-α) plays a central role in the pathophysiology of Alzheimer’s disease (AD). Food and Drug Administration–approved biologic TNF-α inhibitors are thus a potential treatment for AD, but they do not cross the blood-brain barrier. In this short review, we discuss the involvement of TNF-α in AD, challenges associated with the development of existing biologic TNF-α inhibitors for AD, and potential therapeutic strategies for targeting TNF-α for AD therapy.


2020 ◽  
Vol 11 (1) ◽  
pp. 391-401
Author(s):  
Jiang Cheng ◽  
Guowei Wang ◽  
Na Zhang ◽  
Fang Li ◽  
Lina Shi ◽  
...  

AbstractBackground:Alzheimer’s disease (AD) is an ultimately fatal, degenerative brain disease in the elderly people. In the current work, we assessed the defensive capability of isovitexin (IVX) through an intracerebroventricular injection of streptozotocin (STZ)-induced AD mouse model.Methods:Mice were separated into four cohorts: sham-operated control mice; STZ-intoxicated Alzheimer’s mice; IVX cohort, IVX + STZ; and Ant-107 cohort, antagomiR-107 + IVX/STZ as in the IVX cohort.Results:The outcomes indicated that IVX administration ameliorated spatial memory loss and blunted a cascade of neuro-noxious episodes – including increased amyloid-beta (Aβ) and degraded myelin basic protein burden, neuroinflammation (represented by elevated caspase-1, TNF-α and IL-6 levels) and autophagic dysfunction (represented by altered LC3-II, Atg7 and beclin-1 expressions) – via the inhibition of PI3K/Akt/mTOR signalling axis. We considered the question of whether the epigenetic role of microRNA-107 (miR-107) has any impact on these events, by using antagomiR-107.Conclusion:This probing underscored that miR-107 could be a pivotal regulatory button in the activation of molecular signals linked with the beneficial autophagic process and anti-inflammatory activities in relation to IVX treatment. Hence, this report exemplifies that IVX could guard against Aβ toxicity and serve as an effectual treatment for patients afflicted with AD.


Sign in / Sign up

Export Citation Format

Share Document