scholarly journals Oral delivery of Lactobacillus paracasei via microcapsule modulates gut health and intestinal microbiota

Author(s):  
Ishwari Gyawali ◽  
Guilian Zhou ◽  
Guli Xu ◽  
Yuxian Zeng ◽  
Jincheng Li ◽  
...  

Abstract Background: The beneficial impact of probiotics on host health is impaired due to the significant loss of survivability during gastric transit, small intestinal enzymes, and bile acids. Encapsulation helps to preserve the probiotics species from severe environmental factors. This study investigated the effects of oral delivery of probiotics via microcapsule on different parameters of gut health. Methods: Lactobacillus paracasei, highly sensitive probiotic species to gastric acid, was encapsulated with novel encapsulating material, polyacrylate resin, to get a microcapsule. C57BL/6 male mice were equally divided into three groups; supplementing basal feed, a mixture of encapsulating material and Lactobacillus paracasei, and encapsulated Lactobacillus paracasei (microcapsule) for four weeks. Fecal moisture percentage was measured regularly, which was elevated in the encapsulated group, but not in the mixed group. Based on this data, mice from control and encapsulated groups were sacrificed to study the different parameters of gut health. Results: Compared to control, encapsulated probiotics increased villi height, the ratio of villi height to crypt depth, and decreased crypt depth. Simultaneously, the tight junction proteins were upregulated on encapsulated group showing enhancement of intestinal barrier functions. The level of SigA and mucin increased along with gene expression of MUC-2 but, albumin level was decreased. In addition, we found a rise in the relative gene expression of anti-inflammatory factor (IL-10) and decreased pro-inflammatory factors (IL-1β, IL-6, IL-8, and TNF-α). Meanwhile, microbiota metabolites, fecal LPS and TMAO were downregulated while SCFA and lactate were upraised compared to control. Furthermore, GSH-Px and TAOC level were increased and MDA was decreased. Microbiota analysis revealed the proportion of firmicutes was higher at the phylum level on an encapsulated group, while Lactobacillus was elevated at the genus level. We also found a remarkable increase in the population of Lactobacillus murinus at the species level. In summary, the oral delivery of probiotics via microcapsule effectively improves the animals' gut health by improving morphology, barrier function, anti-inflammatory action, antioxidant ability and modulating gut microbiota.

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 377
Author(s):  
Jiayuan Zhao ◽  
Lihan Wang ◽  
Shasha Cheng ◽  
Yu Zhang ◽  
Mo Yang ◽  
...  

The disturbance of intestinal microorganisms and the exacerbation of type 2 diabetes (T2D) are mutually influenced. In this study, the effect of exopolysaccharides (EPS) from Lactobacillus plantarum JY039 on the adhesion of Lactobacillus paracasei JY062 was investigated, as well as their preventive efficacy against T2D. The results showed that the EPS isolated from L. plantarum JY039 effectively improved the adhesion rate of L. paracasei JY062 to Caco-2 cells (1.8 times) and promoted the proliferation of L. paracasei JY062. In the mice experiment, EPS, L. paracasei JY062 and their complex altered the structure of the intestinal microbiota, which elevated the proportion of Bifidobacterium, Faecalibaculum, while inversely decreasing the proportion of Firmicutes, Muribaculaceae, Lachnospiraceae and other bacteria involved in energy metabolism (p < 0.01; p < 0.05); enhanced the intestinal barrier function; promoted secretion of the gut hormone peptide YY (PYY) and glucagon-like peptide-1 (GLP-1); and reduced inflammation by balancing pro-inflammatory factors IL-6, TNF-α and anti-inflammatory factor IL-10 (p < 0.01; p < 0.05). These results illustrate that EPS and L. paracasei JY062 have the synbiotic potential to prevent and alleviate T2D.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chang Han ◽  
Xi Wu ◽  
Nan Zou ◽  
Yunsheng Zhang ◽  
Jinqi Yuan ◽  
...  

The development of liver fibrosis is closely related to the gut microbiota, and the “gut-liver axis” is the most important connection between the two. ethyl acetate extract of Cichorium pumilum Jacq (CGEA) is an herbal extract consisting mainly of sesquiterpenoids. The anti-inflammatory and hepatoprotective effects of CGEA have been reported, but the anti-fibrotic effects of CGEA via intestinal microbes and the “gut-liver axis” cycle have rarely been reported. In this study, we observed that CGEA not only directly attenuated inflammatory factor levels in inflamed mice, but also attenuated liver inflammation as well as liver fibrosis degeneration in rats with liver fibrosis caused by colitis. We observed in vitro that CGEA significantly promoted the growth of Bifidobacterium adolescentis. Similarly, fecal 16S rDNA sequencing of liver fibrosis rats showed that CGEA intervention significantly altered the composition of the intestinal microbiota of liver fibrosis rats. CGEA increased the abundance of intestinal microbiota, specifically, CGEA increased the ratio of Firmicutes to Bacteroidetes, CGEA could significantly increase the levels of Ruminococcus. In addition, CGEA intervention significantly protected intestinal mucosal tissues and improved intestinal barrier function in rats. Lactucin is the main sesquiterpenoid in CGEA, and HPLC results showed its content in CGEA was up to 6%. Lactucin has been reported to have significant anti-inflammatory activity, and in this study, we found that Lactucin decreased p38 kinases (p38), phosphorylation of the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) protein phosphorylation in lipopolysaccharide (LPS)-activated RAW264.7 cells, thereby reducing mRNA expression and protein expression of pro-inflammatory factors inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and inhibiting the release of inflammatory factors interleukin (IL)-6 and nitric oxide (NO), exerting anti-inflammatory effects. In summary, the prevention of liver fibrosis caused by intestinal inflammation by CGEA may be achieved by regulating the intestinal microbiota and restoring the intestinal barrier thereby improving the “gut-liver axis” circulation, reducing liver inflammation, and ultimately alleviating liver fibrosis. Notably, the direct anti-inflammatory effect of CGEA may be due to its content of Lactucin, which can exert anti-inflammatory effects by inhibiting the phosphorylation of Mitogen-activated protein kinase (MAPK) and Akt signaling pathways.


2021 ◽  
Vol 22 (4) ◽  
pp. 1901
Author(s):  
Brielle Jones ◽  
Chaoyang Li ◽  
Min Sung Park ◽  
Anne Lerch ◽  
Vimal Jacob ◽  
...  

Mesenchymal stromal cells derived from the fetal placenta, composed of an amnion membrane, chorion membrane, and umbilical cord, have emerged as promising sources for regenerative medicine. Here, we used next-generation sequencing technology to comprehensively compare amniotic stromal cells (ASCs) with chorionic stromal cells (CSCs) at the molecular and signaling levels. Principal component analysis showed a clear dichotomy of gene expression profiles between ASCs and CSCs. Unsupervised hierarchical clustering confirmed that the biological repeats of ASCs and CSCs were able to respectively group together. Supervised analysis identified differentially expressed genes, such as LMO3, HOXA11, and HOXA13, and differentially expressed isoforms, such as CXCL6 and HGF. Gene Ontology (GO) analysis showed that the GO terms of the extracellular matrix, angiogenesis, and cell adhesion were significantly enriched in CSCs. We further explored the factors associated with inflammation and angiogenesis using a multiplex assay. In comparison with ASCs, CSCs secreted higher levels of angiogenic factors, including angiogenin, VEGFA, HGF, and bFGF. The results of a tube formation assay proved that CSCs exhibited a strong angiogenic function. However, ASCs secreted two-fold more of an anti-inflammatory factor, TSG-6, than CSCs. In conclusion, our study demonstrated the differential gene expression patterns between ASCs and CSCs. CSCs have superior angiogenic potential, whereas ASCs exhibit increased anti-inflammatory properties.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Nikunj Satani ◽  
Kaavya Giridhar ◽  
Natalia Wewior ◽  
Dominique D Norris ◽  
Scott D Olson ◽  
...  

Background: Inflammatory responses after stroke consists of central and peripheral immune responses. The role of the spleen after stroke is well-known, however the role of the lungs has not been studied in detail. We explored the relation between stroke severity and immunomodulatory changes in lung endothelial cells. Methods: Human pulmonary endothelial cells (hPECs, Cell Biologics) were cultured at passage 3. Serum from stroke patients with NIH Stroke Scale (NIHSS) severity ranging from 0 to 20 was collected at 24 hours after stroke. hPECs were exposed to media with 1) 10% FBS alone (N=6), 2) 10% serum from stroke patients (N=72), or 3) 10% serum from stroke mimic patients (N=6). After 3 hour of exposure, fresh media was added and secretomes from hPECs were measured after 24 hours. We isolated RNA from hPECs after 3 hour of serum exposure and measured gene expression (N=6 for each group). Secretome and gene changes in hPECs were analyzed based on stroke severity, tPA treatment, and co-morbidities. Results: Serum from stroke patients reduced the secretion of IL-8, MCP-1 and Fractalkine (p<0.01), and increased the secretion of VEGF and BDNF (p<0.01) from hPECs. These effects were more pronounced depending on stroke severity (Fig). There was no effect of tPA or T2DM on hPECs secretomes. There was significantly reduced gene expression of IL-6, IL-8, MCP-1 and IL-1β and significantly higher expression of ICAM1, IGF-1 and TGF-β1 as compared to stroke mimics. Conclusion: Exposure of hPECs to serum from stroke patients alters their immunomodulatory properties. Higher severity of stroke leads to more protective response from hPECs by reducing the secretion of pro-inflammatory factors, while increasing the secretion of anti-inflammatory factors.


Author(s):  
Tinsley C. Douglas ◽  
Sari S Hannila

Secretory leukocyte protease inhibitor (SLPI) is a small but powerful member of the serine protease inhibitor family, which includes proteins such as elafin and alpha1 anti-trypsin. These proteins all have similar structure and antiprotease abilities, but SLPI has been found to have an additional role as an anti-inflammatory factor. It can inhibit the production of pro-inflammatory cytokines in cells stimulated with lipopolysaccharide, prevent neutrophil infiltration in murine models of lung and liver injury, and regulate the activity of the transcription factor NF-κB. In this review, we will revisit SLPI’s unique biochemistry, and then explore how its anti-inflammatory functions can be linked to more recent findings showing that SLPI can localize to the nuclei of cells, bind DNA, and act as a regulator of gene expression.


2021 ◽  
Author(s):  
Jinju Li ◽  
Rongge Shao ◽  
Qiuwen Xie ◽  
XueKe Du

Abstract Purpose:Ulinastatin (UTI) is an endogenous protease inhibitor with potent anti-inflammatory, antioxidant and organ protective effects. The inhibitor has been reported to ameliorate inflammatory lung injury but precise mechanisms remain unclear. Methods: An in vivo model of lung injury has been constructed by intratracheal infusion of lipopolysaccharide (LPS). The number of neutrophils and the phagocytosis of apoptotic neutrophils were observed by Diff- Quick method. Lung injury was observed by HE staining .BALF cells were counted by hemocytometer and concentrations of protein plus inflammatory factors were measured with a BCA test kit. During in vitro experiments, RAW264.7 cells were pretreated with UTI (1000 and 5000U/ mL), stained with CellTrackerTM Green B0DIPYTM and HL60 cells added with UV-induced apoptosis and PKH26 Red staining. The expression of ERK5\Mer related proteins was detected by western blot and immunofluorescence.Results: An in vivo model of lung injury has been constructed by intratracheal infusion of lipopolysaccharide (LPS). UTI treatment enhanced the phagocytotic effect of mouse alveolar macrophages on neutrophils, alleviated lung lesions, decreased the pro-inflammatory factor and total protein content of BALF and increased levels of anti-inflammatory factors. in vitro experiments ,UTI enhanced the phagocytosis of apoptotic bodies by RAW264.7 cells in a dose-dependent manner. Increased expression levels of ERK5 and Mer by UTI were shown by Western blotting and immunofluorescence.Conclusions: UTI mediated the activation of the ERK5/Mer signaling pathway, enhanced phagocytosis of neutrophils by macrophages and improved lung inflammation. The current study indicates potential new clinical approaches for accelerating the recovery from lung inflammation.


2019 ◽  
Vol 20 (2) ◽  
pp. 325 ◽  
Author(s):  
Jessica Kronenberg ◽  
Kaweh Pars ◽  
Marina Brieskorn ◽  
Chittappen Prajeeth ◽  
Sandra Heckers ◽  
...  

Dimethylfumarate (DMF) has been approved the for treatment of relapsing-remitting multiple sclerosis. The mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood, notably for brain resident cells. Therefore we investigated potential direct effects of DMF and MMF on microglia and indirect effects on oligodendrocytes. Primary rat microglia were differentiated into M1-like, M2-like and M0 phenotypes and treated in vitro with DMF or MMF. The gene expression of pro-inflammatory and anti-inflammatory factors such as growth factors (IGF-1), interleukins (IL-10, IL-1β), chemokines (CCl3, CXCL-10) as well as cytokines (TGF-1β, TNFα), iNOS, and the mannose receptor (MRC1) was examined by determining their transcription level with qPCR, and on the protein level by ELISA and FACS analysis. Furthermore, microglia function was determined by phagocytosis assays and indirect effects on oligodendroglial proliferation and differentiation. DMF treatment of M0 and M1-like polarized microglia demonstrated an upregulation of gene expression for IGF-1 and MRC1, but not on the protein level. While the phagocytic activity remained unchanged, DMF and MMF treated microglia supernatants led to an enhanced proliferation of oligodendrocyte precursor cells (OPC). These results suggest that DMF has anti-inflammatory effects on microglia which may result in enhanced proliferation of OPC.


2021 ◽  
Vol 6 (56) ◽  
pp. eabd6279
Author(s):  
Michael H. Askenase ◽  
Brittany A. Goods ◽  
Hannah E. Beatty ◽  
Arthur F. Steinschneider ◽  
Sofia E. Velazquez ◽  
...  

Opportunities to interrogate the immune responses in the injured tissue of living patients suffering from acute sterile injuries such as stroke and heart attack are limited. We leveraged a clinical trial of minimally invasive neurosurgery for patients with intracerebral hemorrhage (ICH), a severely disabling subtype of stroke, to investigate the dynamics of inflammation at the site of brain injury over time. Longitudinal transcriptional profiling of CD14+ monocytes/macrophages and neutrophils from hematomas of patients with ICH revealed that the myeloid response to ICH within the hematoma is distinct from that in the blood and occurs in stages conserved across the patient cohort. Initially, hematoma myeloid cells expressed a robust anabolic proinflammatory profile characterized by activation of hypoxia-inducible factors (HIFs) and expression of genes encoding immune factors and glycolysis. Subsequently, inflammatory gene expression decreased over time, whereas anti-inflammatory circuits were maintained and phagocytic and antioxidative pathways up-regulated. During this transition to immune resolution, glycolysis gene expression and levels of the potent proresolution lipid mediator prostaglandin E2 remained elevated in the hematoma, and unexpectedly, these elevations correlated with positive patient outcomes. Ex vivo activation of human macrophages by ICH-associated stimuli highlighted an important role for HIFs in production of both inflammatory and anti-inflammatory factors, including PGE2, which, in turn, augmented VEGF production. Our findings define the time course of myeloid activation in the human brain after ICH, revealing a conserved progression of immune responses from proinflammatory to proresolution states in humans after brain injury and identifying transcriptional programs associated with neurological recovery.


2021 ◽  
Vol 8 ◽  
Author(s):  
Samiru S. Wickramasuriya ◽  
Inkyung Park ◽  
Youngsub Lee ◽  
Woo H. Kim ◽  
Chris Przybyszewski ◽  
...  

Chicken NK-lysin peptide 2 (cNK-2) is a natural lytic peptide with direct cytotoxicity against many apicomplexan parasites including Eimeria. Developing an effective oral delivery strategy to express cNK-2 in the intestine, where Eimeria parasites interact with the host's gut epithelial cells, may effectively reduce the fecundity of parasites and minimize intestinal damage. Furthermore, cNK-2 modulates gut immune responses to decrease local inflammation elicited by Eimeria infection in the intestine. Therefore, we developed a stable strain of Bacillus subtilis (B. subtilis) that carries cNK-2 to the gut to determine its effectiveness in ameliorating the negative impacts of coccidiosis and to replace the use of antibiotics in controlling coccidiosis in commercial broiler chicken production. Chickens were randomly allocated into eight treatment groups: two control groups (NC: E. acervulina infected non-B. subtilis control; CON: non-infected control); three B. subtilis-empty vector (EV) groups (EV6: 106 cfu/day/bird; EV8: 108 cfu/day/bird; EV10: 1010 cfu/day/bird), and three B. subtilis-cNK-2 groups (NK6: 106 cfu/day/bird; NK8: 108 cfu/day/bird; NK10: 1010 cfu/day/bird). All chickens, except those in the CON group, were challenged with 5,000 freshly sporulated E. acervulina oocysts through oral gavage on day 15. Chickens were given an oral dose of B. subtilis on days 14, 15, and 16. Body weight, weight gains, and fecal oocyst shedding were measured. To investigate the efficacy of oral B. subtilis-cNK-2 against coccidiosis, gene expression of gut health-related biomarkers was measured using RT-PCR. Markers included SOD1, CAT, and HMOX1 for oxidative stress in the spleen and intestinal mucosa, OCLN, ZO-1, and JAM2 for tight junction proteins, and MUC2 for mucin gene expression in the gut. The results showed that oral treatment of young chickens with B. subtilis-cNK-2 improved growth performance, enhanced gut integrity, and reduced fecal oocyst shedding. Altogether, these results confirm B. subtilis-cNK-2 treatment as a promising and effective alternative strategy to replace antibiotics against coccidiosis based on its ability to reduce parasite survival, to reduce coccidiosis-induced body weight loss, and to decrease gut damage based on the enhanced expression of proteins associated with gut integrity and intestinal health.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Boxun Zhang ◽  
Rensong Yue ◽  
Yuan Chen ◽  
Xiaoying Huang ◽  
Maoyi Yang ◽  
...  

Recent studies have confirmed that increased intestinal permeability and gut-origin lipopolysaccharide (LPS) translocation are important causes of metabolic inflammation in type 2 diabetes (T2D), but there are no recognized therapies for targeting this pathological state. Scutellaria baicalensis and Coptis chinensis are a classic herbal pair often used to treat diabetes and various intestinal diseases, and repair of intestinal barrier damage may be at the core of their therapeutic mechanism. This study investigated the effects of oral administration of Scutellaria-Coptis (SC) on the intestinal mucosal barrier in diabetic rats and explored the underlying mechanism from the perspective of anti-inflammatory and gut microbiota-modulatory effects. The main results showed that, in addition to regulating glycolipid metabolism disorders and inhibiting serum inflammatory factors, SC could also upregulate the expression levels of the tight junction proteins claudin-1, occludin, and zonula occludens (ZO-1), significantly improve intestinal epithelial damage, and inhibit excessive LPS translocation into the blood circulation. Furthermore, it was found that SC could reduce the levels of the inflammatory factors interleukin-1β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α) in intestinal tissue and that the anti-inflammatory effects involved the TLR-4/TRIF and TNFR-1/NF-κB signalling pathways. Moreover, SC had a strong inhibitory effect on some potential enteropathogenic bacteria and LPS-producing bacteria, such as Proteobacteria, Enterobacteriaceae, Enterobacter, Escherichia-Shigella, and Enterococcus, and could also promote the proliferation of butyrate-producing bacteria, such as Lachnospiraceae and Prevotellaceae. Taken together, the hypoglycaemic effects of SC were related to the protection of the intestinal mucosal barrier, and the mechanisms might be related to the inhibition of intestinal inflammation and the regulation of the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document