scholarly journals Aluminum Stress Affects Growth and Physiological Characteristics in Oil Tea

HortScience ◽  
2017 ◽  
Vol 52 (11) ◽  
pp. 1601-1607 ◽  
Author(s):  
Liyuan Huang ◽  
Jun Yuan ◽  
Hui Wang ◽  
Xiaofeng Tan ◽  
Genhua Niu

High concentration of aluminum ion (Al3+) in acidic soil often negatively affects plant growth. To deepen understanding of the mechanisms of physiological response to Aluminum (Al) toxicity, changes in physiology and cell ultrastructure of oil tea (Camellia oleifera) were investigated under different Al levels. Oil tea plants were grown in pots filled with sand and treated with Al at 0, 0.5, 1.25, 2.0, or 4.0 mm. Results showed that Al at 0.5–2.0 mm improved plant growth, whereas Al at 4.0 mm inhibited root growth and damaged cell ultrastructure. Net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), and photochemical efficiency increased as Al concentration increased from 0 to 2.0 mm; however, all parameters mentioned previously decreased at 4.0 mm. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in leaves treated with 2.0 mm Al reached the maximum, which were 29%, 63%, and 28% higher than that of control. When Al was ≤2.0 mm, the content of soluble sugar and soluble protein increased with increasing Al concentration. These results may indicate that oil tea adapted to Al stress through osmotic adjustment and through increasing antioxidant enzyme system. In summary, Al at low concentration (0.5–2.0 mm) improved growth and physiological performance, whereas 4.0 mm negatively impacted performance of oil tea.

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 68
Author(s):  
Lina Ou ◽  
Qiuqiu Zhang ◽  
Dezhong Ji ◽  
Yingying Li ◽  
Xia Zhou ◽  
...  

Chitosan oligosaccharides (COS) has been abundantly studied for its application on regulating plant growth of many horticultural and agricultural crops. We presented here the effect of COS on tea plant growth and yield by physiological and transcriptomic checking. The results showed that COS treatment can enhance the antioxidant activity of superoxide dismutase (SOD) and peroxidase (POD) and increase the content of chlorophyll and soluble sugar in tea plants. The field trail results show that COS treatment can increase tea buds’ density by 13.81–23.16%, the weight of 100 buds by 15.94–18.15%, and the yield by 14.22–21.08%. Transcriptome analysis found 5409 COS-responsive differentially expressed genes (DEGs), including 3149 up-regulated and 2260 down-regulated genes, and concluded the possible metabolism pathway that responsible for COS promoting tea plant growth. Our results provided fundamental information for better understanding the molecular mechanisms for COS’s acting on tea plant growth and yield promotion and offer academic support for its practical application in tea plant.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 400
Author(s):  
Yue Liu ◽  
Xiaoyu Ding ◽  
Yan Lv ◽  
Yong Cheng ◽  
Chunsheng Li ◽  
...  

Serotonin is a well-known agent that plays various roles in animals, and is little known in plants. In this study, the effect of exogenous serotonin was tested on Brassica napus L. (rapeseed) under salt stress. The results revealed that exogenous application of 200 µmol/L serotonin had the best protection under salinity. Exogenous serotonin effectively alleviated the growth inhibition of seedlings caused by salinity, and significantly promoted the accumulation of the fresh and dry weights of roots and shoots. Besides, although the H2O2 and malondialdehyde (MDA) contents were raised under salinity, they were reduced by exogenous serotonin. The chlorophyll content was decreased under salinity, and was increased by exogenous serotonin. Under salinity, serotonin effectively activated antioxidant enzyme system through improving the catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) activities, and the expression of POD7, CAT3 and Cu-SOD genes was also up-regulated. The results also revealed exogenous serotonin increased the solute content by promoting the accumulation of soluble sugar and protein. In conclusion, salinity caused a toxicity to seedlings through oxidative damage to chlorophyll and cell membrane integrity, and serotonin possessed the ability of scavenging reactive oxygen species, osmotic pressure regulation and promoting growth, thus alleviating salinity of rape seedlings.


HortScience ◽  
2021 ◽  
pp. 1-8
Author(s):  
Hong Jiang ◽  
Zhiyuan Li ◽  
Xiumei Jiang ◽  
Yong Qin

Coreopsis tinctoria Nutt. (C. tinctoria) is used in composite tea material and has important medicinal functions. Soil salinization affects the growth and development of C. tinctoria in Xinjiang (China). Here, we discussed the changes in photosynthesis and physiological characteristics of C. tinctoria seedlings treated with different concentrations of NaCl [0 (CK), 50, 100, 150, 200, and 250 mmol·L−1] for 12, 24, and 72 hours. The results showed that the net photosynthetic rate (Pn), stomatal conductance (gS), transpiration rate (Tr), and stomatal inhibition rate (Ls) decreased significantly with increasing concentrations of NaCl. Salt stress promoted the accumulation of peroxidase (POD), catalase (CAT), soluble sugar, soluble protein, and free proline (Pro). A highly significant positive correlation was found between Ls and Fv/Fm; Ls and Fv/Fo; soluble sugar and CAT; soluble sugar and soluble protein. C. tinctoria was most sensitive to the concentrations of 150 to 250 mmol·L−1 NaCl, and its salt stress tolerance was increased by reducing photosynthetic fluorescence parameters, improving the antioxidant enzyme system, and regulating osmotic substances.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Xiaodeng Shi ◽  
Siyu Chen ◽  
Zhongkui Jia

The effects of varieties, concentrations, and number of applications of plant growth retardants (PGRs) on the morphological, physiological, and endogenous hormones of Magnolia wufengensis L.Y. Ma et L. R. Wang were assessed to obtain the most suitable dwarfing protocol for M. wufengensis and to provide theoretical support and technical guidance for the cultivation and promotion of this species. One-year-old M. wufengensis ‘Jiaohong No. 2’ grafted seedlings served as the experimental materials. In the first part of the experiment, three PGRs (uniconazole, paclobutrazol, prohexadione calcium), three concentrations (500, 1000, 1500 ppm), and three applications (one, three, and five applications) were applied in dwarfing experiments to perform L9 (34) orthogonal tests. In the second part of the study, dwarfing experiments were supplemented with different high uniconazole concentrations (0, 1500, 2000, 2500 ppm). Spraying 1500 ppm uniconazole five times achieved the best M. wufengensis dwarfing effect, related indicators of M. wufengensis under this treatment were better than other treatment combinations. Here, M. wufengensis plant height, internode length, scion diameter, and node number were significantly reduced by 56.9%, 62.6%, 72.8%, and 74.4%, respectively, compared with the control group. This treatment increased superoxide dismutase (SOD) activity by 66.0%, peroxidase (POD) activity by 85.0%, soluble protein contents by 43.3%, and soluble sugar contents by 27.6%, and reduced malondialdehyde (MDA) contents by 32.1% in leaves of M. wufengensis compared with the control. The stress resistance of M. wufengensis was enhanced. The treatment also reduced gibberellin (GA3) levels by 73.0%, auxin (IAA) by 58.0%, and zeatin (ZT) by 70.6%, and increased (abscisic acid) ABA by 98.1% in the leaves of M. wufengensis. The uniconazole supplementation experiment also showed that 1500 ppm was the optimal uniconazole concentration. The leaves exhibited abnormalities such as crinkling or adhesion when 2000 or 2500 ppm was applied. Given the importance of morphological indicators and dwarfing for the ornamental value of M. wufengensis, the optimal dwarfing treatment for M. wufengensis was spraying 1500 ppm uniconazole five times.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1181
Author(s):  
Roma Durak ◽  
Jan Dampc ◽  
Monika Kula-Maximenko ◽  
Mateusz Mołoń ◽  
Tomasz Durak

Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the frequency, amplitude, duration of the stress, sex, or the developmental stage of the insect. The aim of the study was to determine the differences in the enzymatic activity of nymphs and adult aphids Aphis pomi, Macrosiphum rosae and Cinara cupressi, and changes in their response to a temperature increase from 20 to 28 °C. The activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POD)) in aphid tissues was analysed for three constant temperatures. The results of our research showed that the enzymatic activity of aphids (measured as the activity of antioxidant, detoxifying and oxidoreductive enzymes) was mainly determined by the type of morph. We observed a strong positive correlation between the activity of the detoxifying and oxidoreductive enzymes and aphids’ development, and a negative correlation between the activity of the antioxidant enzymes and aphids’ development. Moreover, the study showed that an increase in temperature caused changes in enzyme activity (especially SOD, CAT and β-glucosidase), which was highest at 28 °C, in both nymphs and adults. Additionally, a strong positive correlation between metabolic activity (heat flow measured by microcalorimeter) and longevity was observed, which confirmed the relationship between these characteristics of aphids. The antioxidant enzyme system is more efficient in aphid nymphs, and during aphid development the activity of antioxidant enzymes decreases. The antioxidant enzyme system in aphids appears to deliver effective protection for nymphs and adults under stressful conditions, such as high temperatures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuhua Shan ◽  
Min Lv ◽  
Wengang Zuo ◽  
Zehui Tang ◽  
Cheng Ding ◽  
...  

AbstractThe most important measures for salt-affected mudflat soil reclamation are to reduce salinity and to increase soil organic carbon (OC) content and thus soil fertility. Salinity reduction is often accomplished through costly freshwater irrigation by special engineering measures. Whether fertility enhancement only through one-off application of a great amount of OC can improve soil properties and promote plant growth in salt-affected mudflat soil remains unclear. Therefore, the objective of our indoor pot experiment was to study the effects of OC amendment at 0, 0.5%, 1.0%, 1.5%, and 2.5%, calculated from carbon content, by one-off application of sewage sludge on soil properties, rice yield, and root growth in salt-affected mudflat soil under waterlogged conditions. The results showed that the application of sewage sludge promoted soil fertility by reducing soil pH and increasing content of OC, nitrogen and phosphorus in salt-affected mudflat soil, while soil electric conductivity (EC) increased with increasing sewage sludge (SS) application rates under waterlogged conditions. In this study, the rice growth was not inhibited by the highest EC of 4.43 dS m−1 even at high doses of SS application. The SS application increased yield of rice, promoted root growth, enhanced root activity and root flux activity, and increased the soluble sugar and amino acid content in the bleeding sap of rice plants at the tillering, jointing, and maturity stages. In conclusion, fertility enhancement through organic carbon amendment can “offset” the adverse effects of increased salinity and promote plant growth in salt-affected mudflat soil under waterlogged conditions.


2013 ◽  
Vol 41 (2) ◽  
pp. 524 ◽  
Author(s):  
Qiu-Dan NI ◽  
Ying-Ning ZOU ◽  
Qiang-Sheng WU ◽  
Yong-Ming HUANG

Arbuscular mycorrhizal fungi (AMF) can enhance tolerance of plants to soil water deficit, whereas morphological observations of reactive oxygen species and antioxidant enzyme system are poorly studied. The present study thereby evaluated temporal variations of the antioxidant enzyme system in citrus (Citrus tangerina) seedlings colonized by Glomus etunicatum and G. mosseae over a 12-day period of soil drying. Root colonization by G. etunicatum and G. mosseae decreased with soil drying days from 32.0 to 1.0% and 50.1 to 4.5% in 0-day to 12-day, respectively. Compared to the non-AM controls, the AMF colonized plants had significantly lower tissue (both leaves and roots) hydrogen peroxide (H2O2) and superoxide anion radical (O2•–) concentrations during soil water deficit, whereas 1.03–1.92, 1.25–1.84 and 1.18–1.69 times higher enzyme activity in superoxide dismutase, peroxidase (POD) and catalase. In situ leaf H2O2 and root POD location also showed that AM seedlings had less leaf H2O2 but higher root POD accumulation. Furthermore, significantly higher root infection and antioxidant enzymatic activities in plants colonized with G. mosseae expressed than with G. etunicatum during the soil drying. These results demonstrated that the AMs could confer greater tolerance of citrus seedlings to soil water deficit through an enhancement in their antioxidant enzyme defence system whilst an decrease level in H2O2 and O2•–.


1996 ◽  
Vol 105 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Shuji Oh-ishi ◽  
Koji Toshinai ◽  
Takako Kizaki ◽  
Shukoh Haga ◽  
Koichi Fukuda ◽  
...  

2019 ◽  
Vol 9 (4-A) ◽  
pp. 373-375
Author(s):  
Anuradha Gauttam ◽  
Nakuleshwer Dutt Jasuja ◽  
Rakesh Kumar

Various traditional systems of medicine enlightened the importance of Indian plants to have a great medicinal value. The present study was aimed to evaluate the Primary Metabolites study of Vetiveria lawsonii, belong to Poaceae family. Extracts were prepared in methanol, ethanol by Soxhlet extraction. Quantitative extraction of preliminary phytochemicals investigation revealed the presence of Carbohydrates (Starch and Total Soluble Sugar), Lipid, Proteins, and Phenol by using UV spectrometer. Experimental medicinal plant Vetiveria lawsonii are showing high concentration of primary metabolites. Hence, we can conclude that the methanol and ethanol extracts of Vetiveria lawsonii was possess primary metabolites. Keywords: - Vetiveria lawsonii; Primary Metabolites.


Sign in / Sign up

Export Citation Format

Share Document