scholarly journals Fruit Qualities of Interspecific Hybrid and First Backcross Generations between Red Raspberry and Rubus parvifolius

Author(s):  
Saki Toshima ◽  
Marika Fujii ◽  
Momoko Hidaka ◽  
Soya Nakagawa ◽  
Tomonari Hirano ◽  
...  

Interspecific hybridization is useful in raspberry (Rubus idaeus L. ssp. idaeus) breeding to introgression of traits such as heat or cold tolerance, and excellent fruit qualities. Rubus L. wild species in Asia, including Rubus parvifolius L., have been attracting a great deal of attention as sources of new traits in breeding raspberry and blackberry (Rubus fruticosus Agg.). We previously developed and selected IPI-1 and IPI-3 first backcross (BC1) hybrids, [‘Indian Summer’ (R. idaeus ssp. idaeus) × R. parvifolius] × ‘Indian Summer’, as raspberry cultivars adapted to the warm climate in parts of Japan. In this study, we investigated the growth, morphological traits, and fruit qualities, such as sugar, organic acid, anthocyanins, and carotenoids, of each of these IPI lines over a 2-year period to discern their potential as commercial raspberry cultivars. IPI lines had the characteristic of primocane fruit with overflowing from side buds while the parent, IP-1 (‘Indian Summer’ × R. parvifolius), did not. IPI lines showed significantly lower values in anthocyanin content than red raspberry ‘Skeena’, while showing higher carotenoid contents. This study is the first research about fruit qualities such as anthocyanin and carotenoid content of BC1 hybrids using Japanese wild Rubus species.

2015 ◽  
Vol 140 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Christine M. Bradish ◽  
Gad G. Yousef ◽  
Guoying Ma ◽  
Penelope Perkins-Veazie ◽  
Gina E. Fernandez

High tunnels have been widely adopted for red raspberry (Rubus idaeus) production in the United States to extend the harvest season and increase yields. In this study, effects of high tunnel production on contents of plant secondary metabolites (anthocyanins, carotenoids, tocopherols, and ellagitannins) in red raspberry fruit were determined for three fall-fruiting cultivars (Autumn Britten, Caroline, and Nantahala) grown at three locations in North Carolina under field and high tunnel cultivation systems. Cultivar was the primary contributing factor to variation in phytochemicals, with minor effects of location and production system. The anthocyanin cyanidin-3-glucoside and the carotenoids α-carotene, β-carotene, lutein, and zeaxanthin were higher in fruit produced in field compared with tunnel cultivation (P < 0.01). Accumulation of total anthocyanins and tocopherols in fruit were unaffected by high tunnel cultivation in comparison with traditional field cultivation. Carotenoid content varied by genotype and production system. ‘Autumn Britten’ and ‘Caroline’ showed no difference, but were higher than ‘Nantahala’ for α-carotene, β-carotene, 9-cis-β-carotene, and lutein + zeaxanthin (P < 0.0001). Phytochemical differences among field and tunnel produced fruit have important implications for breeding with increased nutritional value in mind, and also the understanding of the relationships of plant pigments to light and temperature.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Anna Kostecka-Gugała ◽  
Iwona Ledwożyw-Smoleń ◽  
Joanna Augustynowicz ◽  
Gabriela Wyżgolik ◽  
Michał Kruczek ◽  
...  

AbstractFruits of several, mainly Polish cultivars of floricane- and primocane-fruiting red raspberry (Rubus idaeus), black raspberry (Rubus occidentalis) and blackberry (Rubus fruticosus), grown in central Europe during two successive vegetation periods, were investigated. The content of phenolic compounds, including anthocyanins, as well as antioxidant properties of fruit extracts were analysed. A number of methods were employed: ferric ion reducing antioxidant power (FRAP), cupric ion reducing antioxidant capacity (CUPRAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity involving both colorimetric and EPR spectrometric measurements. From among all the tested fruits black raspberries had the largest antioxidant capacity as verified by all methods used in this study. These berries were also the most abundant in phenolic and anthocyanin compounds. Blackberries were characterised by larger antioxidant capacity than red raspberry fruits which were accompanied by higher content of total phenolics and anthocyanins. Berries of primocane-fruiting cultivars, often used for intensive agricultural production, generally did not differ in the total phenolic and anthocyanin content as well as in the antioxidant capacity as compared to the traditional, floricane-fruiting ones. The research contributes to deep characterisation of central European berry fruits which due to their high content and large diversity of health-beneficial compounds are classified as natural functional food.


2019 ◽  
Vol 48 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Екатерина Жбанова ◽  
Ekaterina Zhbanova

The article gives a comparative analysis of the data obtained by Russian and foreign scientists considering the content of vitamins and other valuable substances in raspberry fruit. That determines high antioxidant properties of raspberry. The goal of the study was to generalize information which shows specific nature of that plant in relation to the complex of vitamins and polyphenol compounds which it contains. The author shows that fruit of raspberry R. idaeus L. consists of 5–40 mg/100 g of vitamin C, folic acid - 26-44 mg/100 g. Consumption of only 100 g of raspberries satisfies daily requirement of vitamin C (60 mg) by 8.3 - 66.7%, in folates (200 mg) by 13–22%. Total anthocyanin content in red raspberry varies within wide range (20–100 mg/100 g), in black raspberry – form 200 to 600 mg/100 g. Raspberry accumulates from 38 to 270 mg/100 g of ellagic acid. In small amounts the cultivated red raspberry consists of the following substances: carotenoids (β-carotene – 9.3 mg/100 g, zeaxanthin – 11 mg/100 g, lutein – 320 mg /100 g), vitamin E – 0.15–0.44 mg/100 g tocopherol equivalents, thiamine – 0,020 mg/100 g, riboflavin – 0.034 mg/100 g, niacin – 0.036 mg/100 g, pyridoxin – 0.05 mg/100 g, biotin – 5.7 mg/100 g. Total content of antioxidants in the cultivated raspberry fruit is 1.71 mg/g (standard quercetin). As a result of the analysis of different literary sources the author determined that raspberry antioxidant properties are mainly connected with high polyphenol content. Contribution of vitamin C into total antioxidant activity is relatively low. Though raspberry fruit chemical composition has already been studied quite well it is necessary to perform further more detailed research of different raspberry cultivars considering their total antioxidant activity as well as certain biochemical components which comprise antioxidant complex of raspberry fruit. The obtained results will form the base for further research aimed at investigating phytochemical compounds of fruit crops which have become an essential part of healthy human diet and developing nutraceutical products.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 468b-468
Author(s):  
Stephen F. Klauer ◽  
J. Scott Cameron ◽  
Chuhe Chen

After promising results were obtained with an open-style split trellis (two top wires) in its initial year, two new trials were established in 1997 in northwest (Lynden) and southwest (Woodland) Washington. For the split trellis, actual yields were 33% (machine-picked 1/2 season) and 17% (hand-picked) greater, respectively, for the two locations compared to the conventional trellis (one top wire). In Woodland, canes from the split trellis had 33% more berries, 55% more laterals, 69% more leaves, and 25% greater leaf area compared with the conventional trellis. Greatest enhancement of these components was in the upper third of the canopy. Laterals were also shorter in this area of the split canopy, but there was no difference in average total length of lateral/cane between trellis types. Total dry weight/cane was 22% greater in the split trellis, but component partitioning/cane was consistent between the two systems with fruit + laterals (43%) having the greatest above-ground biomass, followed by the stem (30% to 33%) and the leaves (21% to 22%). Measurement of canopy width, circumference, and light interception showed that the split-trellis canopy filled in more quickly, and was larger from preanthesis through postharvest. Light interception near the top of the split canopy was 30% greater 1 month before harvest with 98% interception near the top and middle of that canopy. There was no difference between the trellis types in leaf CO2 assimilation, spectra, or fluorescence through the fruiting season, or in total nitrogen of postharvest primocane leaves.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Archana Khadgi ◽  
Courtney A. Weber

Red raspberry (Rubus idaeus L.) is an expanding high-value berry crop worldwide. The presence of prickles, outgrowths of epidermal tissues lacking vasculature, on the canes, petioles, and undersides of leaves complicates both field management and harvest. The utilization of cultivars with fewer prickles or prickle-free canes simplifies production. A previously generated population segregating for prickles utilizing the s locus between the prickle-free cultivar Joan J (ss) and the prickled cultivar Caroline (Ss) was analyzed to identify the genomic region associated with prickle development in red raspberry. Genotype by sequencing (GBS) was combined with a genome-wide association study (GWAS) using fixed and random model circulating probability unification (FarmCPU) to analyze 8474 single nucleotide polymorphisms (SNPs) and identify significant markers associated with the prickle-free trait. A total of four SNPs were identified on chromosome 4 that were associated with the phenotype and were located near or in annotated genes. This study demonstrates how association genetics can be used to decipher the genetic control of important horticultural traits in Rubus, and provides valuable information about the genomic region and potential genes underlying the prickle-free trait.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 794
Author(s):  
Luca M. Scolari ◽  
Robert D. Hancock ◽  
Pete E. Hedley ◽  
Jenny Morris ◽  
Kay Smith ◽  
...  

‘Crumbly’ fruit is a developmental disorder in raspberry that results in malformed and unsaleable fruits. For the first time, we define two distinct crumbly phenotypes as part of this work. A consistent crumbly fruit phenotype affecting the majority of fruits every season, which we refer to as crumbly fruit disorder (CFD) and a second phenotype where symptoms vary across seasons as malformed fruit disorder (MFD). Here, segregation of crumbly fruit of the MFD phenotype was examined in a full-sib family and three QTL (Quantitative Trait Loci) were identified on a high density GbS (Genotype by Sequencing) linkage map. This included a new QTL and more accurate location of two previously identified QTLs. A microarray experiment using normal and crumbly fruit at three different developmental stages identified several genes that were differentially expressed between the crumbly and non-crumbly phenotypes within the three QTL. Analysis of gene function highlighted the importance of processes that compromise ovule fertilization as triggers of crumbly fruit. These candidate genes provided insights regarding the molecular mechanisms involved in the genetic control of crumbly fruit in red raspberry. This study will contribute to new breeding strategies and diagnostics through the selection of molecular markers associated with the crumbly trait.


2019 ◽  
Vol 50 (3) ◽  
pp. 155-163 ◽  
Author(s):  
B. Talebi ◽  
M. Heidari ◽  
H. Ghorbani

Abstract The elevation of arsenic (As) content in soils is of considerable concern with respect to its uptake by plant and subsequent entry into wildlife and human food chains. The treatment of sorghum seedlings with As as NaH2As4O. 7H2O at various concentrations (A1 = 0, A2 = 20, A3 = 40 and A4 = 60 mg As kg−1 soil) and salinity at four different levels (S1 = 0, S2 = 3, S3 = 6 and S3 = 9 dS m−1) reduced fresh and dry weights of sorghum plants. The co-application of As and salinity increased the guaiacol peroxidase (GPX) activity in shoot and root tissues. The highest GPX activity in shoot and root tissues was obtained at S2A4 and S3A3 treatments, respectively. The activity of catalase (CAT) in shoot was not changed, but unlike the GPX activity, salinity and As decreased the CAT activity in root tissues. Concerning the photosynthesis pigments, salinity had no effect on the chlorophyll ‘a’, chlorophyll ‘b’ and carotenoid content in leaves, but the As treatment significantly decreased the content of both chlorophyll types. Salinity increased the anthocyanin content in leaves. There were negative correlation between soluble carbohydrates (r2 = −0.78**) and stomata conductance (r2 = −0.45**) and dry weight of the plant biomass in this study. By increasing the salinity and As concentration in root medium, soluble carbohydrate in leaves increased but salinity decreased the leaf stomata conductance.


1993 ◽  
Vol 118 (3) ◽  
pp. 388-392 ◽  
Author(s):  
Jean-Pierre Privé ◽  
J.A. Sullivan ◽  
J.T.A. Proctor ◽  
O.B. Allen

The influence of genotype x environment interactions on the performance of `Autumn Bliss' `Heritage' and `Redwing' primocane-fruiting (PF) red raspberry (Rubus idaeus L.) cultivars was studied at six sites across Ontario and Quebec during 1989 and 1990. Cultivar × location × year interactions were found for most vegetative and reproductive components analyzed. `Autumn Bliss' had the most consistent performance of the three cultivars in all location/year combinations, while `Redwing' varied greatly between environments. `Heritage' was always the latest-bearing of the three cultivars and failed to achieve its maximum yield potential in many of the northern locations.


Sign in / Sign up

Export Citation Format

Share Document