scholarly journals Antimicrobial Activity of Mononuclear and Bionuclear Nitrite Complexes of Platinum (II) and Platinum (IV)

2020 ◽  
Vol 50 (2) ◽  
pp. 329-342
Author(s):  
Olesya Salishcheva ◽  
Alyeksandr Prosyekov ◽  
V. Dolganuk

Introduction. Pathogens keep evolving and develop resistance to antimicrobial drugs. As a result, science is constantly searching for new antimicrobial agents. Their complex forms based on organic and inorganic ligands exhibit a stronger synergistic antimicrobial effect, if compared to free ligands. The Scopus database contains 73 thousand scientific articles about antimicrobial activity descriptors published during the last five years. This selection includes ten thousand reviews and three thousand publications that feature the antimicrobial activity of platinum complexes. The research objective was to screen the antimicrobial properties of platinum nitrite complexes. The present paper highlights some of the current domestic and foreign trends in this field of research: the biochemical synthesis of peptides as metabolites of bacteria; the development of anti-biofilm agents that act on the protective systems of pathogens; the creation of antimicrobial nanosystems; the synthesis of antimicrobial surfactants; the synthesis and study of the antimicrobial activity of platinum complexes, etc. The authors also give a brief description of the mechanisms of antibacterial action. Study objects and methods. Five previously synthesized complexes of platinum (II) and platinum (IV), both mononuclear and bionuclear, were tested for antimicrobial activity. The platinum complexes contained terminal and bridged nitrite ligands. The test cultures included Bacillus subtilis and Aspergillus niger. The experiment involved the disk-diffusion method and the macro method of serial dilutions. Results and discussion. All the complexes inhibited the metabolic growth of microorganisms to various degrees. The results depended on the composition and structure of the complex, the number and charge of the coordination centers, the degree of platinum oxidation, and the thermodynamic stability and lability of ligand bonds with the complexing agent. The response to Aspergillus niger proved more pronounced. The Pt+2 nonelectrolyte complex containing both terminal and bridged nitrite ligands was less active than the Pt+2 cationic complex, which contained only bridged NO2– ligands. The highest antibacterial activity belonged to the bionuclear complex of PtIV-PtII [(NH3)2 (NO2)2PtIV(µ-NO2)2PtII(NH3)2](NO3)2 in relation to Bacillus subtilis B4647 and Aspergillus niger. The minimum inhibitory concentration (MIC) was > 125 μmol. Conclusion. The complexing resulted in a synergistic effect between the ligand and the complexing substance. The poly-core complexes contain two or more linked platinum centers that can covalently bind to DNA. They form a completely different type of DNA adducts compared to mononuclear complexes, as well as cross-links between DNA chains with fixation on different parts. The octahedral platinum complexes are kinetic and thermodynamically inert. Unlike similar squamous complexes, they proved to be able to act as prodrugs, recovering inside or outside the bacterial cell. The antimicrobial activity of the mixed-valence PtIV-PtII bionuclear complex [(NH3)2 (NO2)2PtIV(µ-NO2)2PtII(NH3)2](NO3)2 produced inhibitory effect comparable to the existing antimicrobial drugs. A further research will focus on composite mixtures of platinum complexes with other existing antimicrobial agents, as well as on other bacterial strains.

INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (07) ◽  
pp. 5-9
Author(s):  
R. G Ingle ◽  
◽  
S. J. Wadher

A set of ten new 2,3-diphenyl-6-sulfonamido quinoxaline derivatives was synthesized and screened for antimicrobial activity by disk diffusion method. Test derivatives R3, R5, R’’1 and R’’2 show promising results against bacterial strains S. aureus gram positive and E. coli gram negative organism with the concentration 1000 μg/mL in disk diffusion method. Rest of the derivatives show sensitivity against the same organisms. All the synthesized derivatives were confirmed by their spectral data.


Author(s):  
Maysa Serpa ◽  
Juliana Amália Fonte Bôa do Nascimento ◽  
Mirian Fátima Alves ◽  
Maria Isabel Maldonado Coelho Guedes ◽  
Adrienny Trindade Reis ◽  
...  

Antimicrobial resistance is a current and important issue to public health, and it is usually associated with the indiscriminate use of antimicrobials in animal production. This study aimed to evaluate the antimicrobial susceptibility profile in bacterial isolates from pigs with clinical respiratory signs in Brazil. One hundred sixty bacterial strains isolated from pigs from 51 pig farms in Brazil were studied. In vitro disk-diffusion method was employed using 14 antimicrobial agents: amoxicillin, penicillin, ceftiofur, ciprofloxacin, enrofloxacin, chlortetracycline, doxycycline, oxytetracycline, tetracycline, erythromycin, tilmicosin, florfenicol, lincomycin, and sulfadiazine/trimethoprim. The majority of isolates were resistant to at least one antimicrobial agent (98.75%; 158/160), while 31.25% (50/160) of the strains were multidrug resistant. Streptococcus suis and Bordetella bronchiseptica were the pathogens that showed higher resistance levels. Haemophilus parasuis showed high resistance levels to sulfadiazine/trimethoprim (9/18=50%). We observed that isolates from the midwestern and southern regions exhibited four times greater chance of being multidrug resistant than the isolates from the southeastern region studied. Overall, the results of the present study showed a great level of resistance to lincomycin, erythromycin, sulfadiazine/trimethoprim, and tetracycline among bacterial respiratory pathogens isolated from pigs in Brazil. The high levels of antimicrobial resistance in swine respiratory bacterial pathogens highlight the need for the proper use of antimicrobials in Brazilian pig farms.


2008 ◽  
Vol 63 (9-10) ◽  
pp. 649-652 ◽  
Author(s):  
Nastaran Momen-Roknabadi ◽  
Ahamd R. Gohari ◽  
Hamid R. Monsef-Esfehani ◽  
Farideh Attar ◽  
Reza Hajiaghaee ◽  
...  

The antimicrobial activity of ethanol and chloroform extracts of Pentanema divaricatum Cass. was studied using the conventional disk diffusion method. The extracts’ highest antimicrobial activity was observed against Aspergillus niger. Bioassay-guided fractionation of the crude extract by preparative thin layer chromatography (PTLC) showed one antimicrobial fraction which was especially effective against Aspergillus niger. By conventional spectroscopy the active fraction was identified as 4α,5α-epoxy-10α,14H-1-epi-inuviscolide. This compound represented the most potent antimicrobial candidate, with MIC values of < 25 μg/disk against A. niger strains and 200 μg/disk against Bacillus cereus and Staphylococcus aureus.


Author(s):  
SHIBU GEORGE ◽  
MEVLIN JOY

Objective: The objective of this study was to evaluate the antimicrobial activity of methanolic extract of Ludwigia parviflora L. using standard bacterial strains and compare its activity with that of standard antibiotics. Methods: The antibacterial activity and antibiotic susceptibility tests were done by disk diffusion method using MTCC bacterial strains. Results: The study revealed that the methanolic extract of the whole plant of L. parviflora L. was effective to inhibit the growth of Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Among the tested strains, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli were more susceptible to the methanolic extract of L. parviflora than the commonly using antibiotic tetracycline 30 mcg. The activity of methanolic extract was also higher than the activity of gentamicin 10 mcg against the P. aeruginosa. Conclusion: The study concluded that the crude methanolic extract of the whole plant of L. parviflora L. is a good source for antibacterial agent against S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. Hence, this plant can be used as a natural alternative to the common antibiotics such as gentamicin and tetracycline against common bacterial infections after validating its pharmacological and toxicological activities.


2006 ◽  
pp. 131-136 ◽  
Author(s):  
Zoran Kukric ◽  
Ljiljana Topalic-Trivunovic

The work is concerned with the antibacterial effect of ethanolic solutions of cis- and trans-resveralrol (cis-.lrans-3,5.4'-trihydroxystilbene) obtained by the extraction (ethanol-water 1:1 v/v) of Polygonum cuspidatum rhizome. Antibacterial activity was tested by disk diffusion method on the following bacteria: Escherichia coli, Sarcina liitea. Bacillus subtilis and Staphylococcits sp., using extract concentrations of 5 mg/disk. All tests showed significant antimicrobial activity, whereby the extract with trans-resveratrol exhibited more significant effect than the extract of cis-resveratrol.


2020 ◽  
Vol 17 ◽  
Author(s):  
Srinu Bhoomandla ◽  
Phani Raja Kanuparthy ◽  
Rambabu Gundla ◽  
Ramana Reddy Bobbala

: A Three component Synthesis of novel 5-phenyl-2-(thiophen-2-yl)-4-(trifluoromethyl)-5H-indeno [1,2-b] [1,8] naphthyridin-6(11H)-one derivatives (4a-n) were prepared using 6-phenyl/(thiophen-2-yl)-4-(trifluoromethyl)pyridin-2-amine, 1H-indene-1,3(2H)-dione and aryl aldehyde using 40% aq. HF with good yield. All the synthesized compounds were screened against Gram-positive and Gram-negative bacterial strains and different Candida strains by well diffusion method. Compounds 4c, 4f and 4g showed promising activity on Bacillus subtilis strain and compounds 4c and 4g showed promising activity towards Candida albicans starains.


2010 ◽  
Vol 73 (9) ◽  
pp. 1613-1617 ◽  
Author(s):  
SEZA ARSLAN ◽  
AYLA EYI

In the present study, a total of 225 retail meat products (poultry meat, ground beef, and beef samples) were tested for the prevalence of Salmonella. Of these, 50 (22.2%) were positive for Salmonella. Overall, the pathogen was detected in 22 (29.3%) samples of poultry meat (n = 75), 16 (21.3%) samples of ground beef (n = 75), and 12 (16%) samples of beef (n = 75). The most common isolate was Salmonella enterica serovar Typhimurium (9.8%), followed by S. bongori species (8.9%) and S. enterica subsp. diarizonae (3.5%). The Salmonella strains isolated were also examined for antimicrobial resistance patterns and production of β-lactamase enzyme. The resistance levels of the isolates against 14 different antimicrobial agents were tested by the disk diffusion method. None of the strains exhibited resistance to cefotaxime, ciprofloxacin, norfloxacin, or levofloxacin. However, the highest resistance rates in the meat isolates were 64% each for ampicillin and cephazolin and 56% for amoxicillin–clavulanic acid. A total of 62% of the 50 Salmonella strains were multiresistant to three or more antimicrobial agents. The exhibited multiple resistance to four or more antimicrobial drugs was 32%. Furthermore, none of the isolates had β-lactamase enzyme activity.


Author(s):  
Ahmad Jafari ◽  
Ramin Mazaheri Nezhad Fard ◽  
Sima Shahabi ◽  
Farid Abbasi ◽  
Golshid Javdani Shahedin ◽  
...  

Background and Objectives: Silver nanoparticles (Ag-NPs) are potent antimicrobial agents, which have recently been used in dentistry. The aim of the current study was to optimize antimicrobial activity of Ag-NPs used in preparing irre- versible hydrocolloid impressions against three microorganisms of Escherichia coli, Streptococcus mutans and Candida albicans. Materials and Methods: After assessing antimicrobial activity of the compound using disk diffusion method, three parame- ters of concentration of Ag-NPs (250-1000 ppm), ratio of hydrocolloid impression material powder to water (0.30-0.50) and time of mixing (20.0-60.0 s), affecting antimicrobial activity of irreversible hydrocolloid impression materials against the three microorganisms, were optimized. This combined process was successfully modeled and optimized using Box-Behnken design with response surface methodology (RSM). Decreases in colony number of E. coli, S. mutans and C. albicans were proposed as responses. Results: Qualitative antimicrobial assessments respectively showed average zone of inhibition (ZOI) of 3.7 mm for E. coli, 3.5 mm for S. mutans and 4 mm for C. albicans. For all responses, when the mixing duration and powder-to-water ratio increased, the circumstances (mixing duration of 59.38 s, powder-to-water ratio of 0.4 and Ag-NP concentration of 992 response) increased. Results showed that in optimum ppm, the proportion of decreases in colony numbers was maximum (89.03% for E. coli, 87.08% for S. mutans and 74.54% for C. albicans). Regression analysis illustrated a good fit of the ex- perimental data to the predicted model as high correlation coefficients validated that the predicted model was well fitted with data. Values of R2Adj with R2Pred were associated to the accuracy of this model in all responses. Conclusion: Disinfection efficiency dramatically increased with increasing of Ag-NP concentration, powder-to-water ratio and mixing time.


Author(s):  
V. V. Pantyo ◽  
M. M. Fizer ◽  
O. I. Fizer ◽  
G. M. Koval ◽  
E.M. Danko

Annotation. The development and rapid pace of the spread of resistance to antimicrobial agents predetermines the search for new methods of counteracting pathogenic and conditionally pathogenic microorganisms. In this context, studies of the antimicrobial activity of newly synthesized chemicals, which in the future can be considered as candidates for antiseptic and disinfectants, are relevant. The aim of the work was to determine the antimicrobial activity of new ionic associates based on the surface-active cetylpyridinium cation with respect to certain opportunistic microorganisms. The antimicrobial activity of four ionic associates based on the cetylpyridinium cation with respect to clinical isolates of E. coli, P. vulgaris, K. pneumonia, P. aeruginosa, S. aureus, as well as the collection test strains of S. aureus ATCC 25923, E. coli ATCC 29522 and P. aeruginosa ATCC 27853 was studied. Screening studies were performed by the disk diffusion method. With substances that showed an antimicrobial effect, quantitative studies were carried out by the method of serial macro-dilutions in a liquid nutrient media. Screening studies revealed the antibacterial activity of the substances against E. coli ATCC 25923, E. coli (clinical isolate), P. vulgaris and K. pneumonia. With these microorganisms quantitative studies were carried out with the determination of the minimum inhibitory and minimum bactericidal concentrations. The most pronounced antimicrobial activity for the investigated microflora was shown by tetraphenylborate and cetylpyridinium perchlorate. The MIC and MBC values of these substances ranged between 1.625–3.125 mmol / L and 3.125–12.5 mmol / L, respectively. The studied associates showed high antimicrobial activity against representatives of the Enterobacteriaceae family in in vitro studies. Promising is the further study of the effect of the counter-anion associates of cationic surfactants on the biofilm formation of conditionally pathogenic microorganisms.


Author(s):  
Bindhu R. Kamath ◽  
Sabeena Kizhedath

Background: Cassia fistula Linn is a plant which is widely grown in India and is used for medicinal purposes. The study was carried out with an objective to demonstrate the antimicrobial activity of leaves of Cassia fistula Linn. The aim of the study is to assess antibacterial and antifungal activity of methanolic leaf extract of Cassia fistula Linn against selected clinical isolates.Methods: The antimicrobial activity of methanolic extract of Cassia fistula was evaluated using agar well diffusion method and to zone of inhibition of extract was determined. Clinical isolates of Staphyloccocus aureus, MRSA, Pseudomonas aeruginosa, E. coli and Proteus were screened.Results: The methanolic extracts exhibited antibacterial activity against Staphylococcus aureus. The extract was not active against E. coli, Proteus, MRSA, Pseudomonas aeruginosa. The extract also failed to demonstrate antifungal activity against Candida albicans and Aspergillus niger.Conclusions: The global emergence of multidrug resistant bacterial strains is increasing, limiting the effectiveness of current drugs and treatment failure of infections. A novel approach to the prevention of antibiotic resistance of pathogenic species is the use of new compounds that are not based on existing synthetic antimicrobial agents.


Sign in / Sign up

Export Citation Format

Share Document