scholarly journals The Solubility and Hydrolysis of Aqueous Aluminium Hydroxides in Dilute Fresh Waters at Different Temperatures

1990 ◽  
Vol 21 (3) ◽  
pp. 195-204 ◽  
Author(s):  
Espen Lydersen

This study is mainly focusing on the effect of temperature and pH on the chemistry of Al(OH)3(s) using available thermodynamic data. The calculations show that a doubling of the [H+] or a decrease in temperature by 15°C, approximately yields the same solubility increase of the various Al(OH)3(s) presented. The relative concentration of aqueous aluminium hydrolysis complexes is also highly temperature dependent. At 25°C and pH 5, the calculated distribution of dissolved, inorganic aluminium hydroxides corresponds to about 36% of Al3+, 37 % of Al(OH)2+, 26 % of Al(OH)2+ and 1 % of Al(OH)30. At the same pH but at 0°C, about 84%, 13%, 2% and 0% are present as Al3+, Al(OH)2+, Al(OH)2+ and Al(OH)30, respectively. This temperature effect is of major importance as the hydroxide species are supposed to be the most toxic species to aquatic biota. Literature reports on the equilibrium constants Al(OH)3(s), log*Ks, vary from about 8 to 11, a variation in the product by a factor of 1000. In natural soil/water systems the solubility products of crystalline and amorphous solid aluminium sources are unknown and the solubility may also be coupled to combined weathering/ion exchange processes. In addition substantial amount of aluminium may be present as organic complexes where aluminium by cation exchange reactions may enter the solution as monomeric inorganic species. Thus, if a low value for the equilibrium constants of Al(OH)3(s) is used as reference when calculating the degree of aluminium saturation, an apparent oversaturation will often be demonstrated. To estimate the degree of aluminium saturation in natural waters whould therefore only be of theoretical interest.

2013 ◽  
Vol 15 (4) ◽  
pp. 283 ◽  
Author(s):  
L. Largitte ◽  
P. Lodewyckx

The effect of temperature on the adsorption of lead by an activated carbon from coconut shells is investigated. The pseudo second order equation is applied to the kinetic data obtained at different temperatures in order to determine the adsorption rate constants at these temperatures. Then, the Arrhenius equation is applied to the rate constants to determine the activation energy of the sorption reaction and the pre-exponential factor. By applying the Eyring equation to the rate constants, the standard thermodynamic activation parameters of the sorption reaction can also be calculated. In addition, the isotherms of lead adsorption on the activated carbon from coconut shells, at different temperatures, are determined and fitted by the Langmuir equation. The Van’t Hoff equation is applied to the Langmuir equilibrium constants in order to determine the standard enthalpy of the sorption reaction. The other standard thermodynamic parameters<br />(Gibbs standard enthalpy and standard entropy) are deduced. The isosteric standard sorption enthalpy is also determined by using both the classical approach and an adapted Clausius Clapeyron equation. The results are identical. The value obtained is higher, but more correct than that of Langmuir. On the basis of these<br />thermokinetic parameters, the activated carbon from Coconut shells can be considered as a very efficient carbon for the sorption of lead and its sorption efficiency (rate and quantity) increase with the temperature.


2001 ◽  
Vol 81 (3) ◽  
pp. 331-336 ◽  
Author(s):  
Elham A Ghabbour ◽  
Geoffrey Davies ◽  
Nadeem K Ghali ◽  
Matthew D Mulligan

The brown biomaterials called humic acids (HA) in peats and soils retain water and bind metal cations and other solutes. Studies of the interactions of purified solid peat and soil-derived HA from different countries with metal cations in water probe HA microstructures and help to characterize the metal binding sites. Labile cations such as Caaq2+, Co aq2+, Cu aq2+, Fe aq3+, Mg aq2+ and Mn aq2+ tightly bind to solid HAs in sequential steps. The isotherms A vs. c are well fitted with the Langmuir model and plots of 1/A vs. 1/c are linear for each step. Here, A is mmol bound metal g–1 HA and c is the equilibrium cation concentration (M). This paper compares the stoichiometric site capacities vi and equilibrium constants Ki for tight binding of Ca aq2+, Co aq2+, Cu aq2+, Fe aq3+, Mg aq2+ and Mn aq2+ at different solid HA sites. Measurements at different temperatures give linearly correlated metal binding enthalpy and entropy changes, indicating that conformational changes and cation/HA hydration/dehydration are important factors in metal binding and release by solid HAs. Key words: Humic acids; metal binding; isotherms; thermodynamics


Author(s):  
D. T. Gauld ◽  
J. E. G. Raymont

The respiratory rates of three species of planktonic copepods, Acartia clausi, Centropages hamatus and Temora longicornis, were measured at four different temperatures.The relationship between respiratory rate and temperature was found to be similar to that previously found for Calanus, although the slope of the curves differed in the different species.The observations on Centropages at 13 and 170 C. can be divided into two groups and it is suggested that the differences are due to the use of copepods from two different generations.The relationship between the respiratory rates and lengths of Acartia and Centropages agreed very well with that previously found for other species. That for Temora was rather different: the difference is probably due to the distinct difference in the shape of the body of Temora from those of the other species.The application of these measurements to estimates of the food requirements of the copepods is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aiyan Guan ◽  
Inge Van Damme ◽  
Frank Devlieghere ◽  
Sarah Gabriël

AbstractAnisakidae, marine nematodes, are underrecognized fish-borne zoonotic parasites. Studies on factors that could trigger parasites to actively migrate out of the fish are very limited. The objective of this study was to assess the impact of different environmental conditions (temperature, CO2 and O2) on larval motility (in situ movement) and mobility (migration) in vitro. Larvae were collected by candling or enzymatic digestion from infected fish, identified morphologically and confirmed molecularly. Individual larvae were transferred to a semi-solid Phosphate Buffered Saline agar, and subjected to different temperatures (6 ℃, 12 ℃, 22 ℃, 37 ℃) at air conditions. Moreover, different combinations of CO2 and O2 with N2 as filler were tested, at both 6 °C and 12 °C. Video recordings of larvae were translated into scores for larval motility and mobility. Results showed that temperature had significant influence on larval movements, with the highest motility and mobility observed at 22 ℃ for Anisakis spp. larvae and 37 ℃ for Pseudoterranova spp. larvae. During the first 10 min, the median migration of Anisakis spp. larvae was 10 cm at 22 ℃, and the median migration of Pseudoterranova spp. larvae was 3 cm at 37 ℃. Larval mobility was not significantly different under the different CO2 or O2 conditions at 6 °C and 12 ℃. It was concluded that temperature significantly facilitated larval movement with the optimum temperature being different for Anisakis spp. and Pseudoterranova spp., while CO2 and O2 did not on the short term. This should be further validated in parasite-infected/spiked fish fillets.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 134
Author(s):  
Ana Isabel Galván ◽  
Alicia Rodríguez ◽  
Alberto Martín ◽  
Manuel Joaquín Serradilla ◽  
Ana Martínez-Dorado ◽  
...  

Dried fig is susceptible to infection by Aspergillus flavus, the major producer of the carcinogenic mycotoxins. This fruit may be contaminated by the fungus throughout the entire chain production, especially during natural sun-drying, post-harvest, industrial processing, storage, and fruit retailing. Correct management of such critical stages is necessary to prevent mould growth and mycotoxin accumulation, with temperature being one of the main factors associated with these problems. The effect of different temperatures (5, 16, 25, 30, and 37 °C) related to dried-fig processing on growth, one of the regulatory genes of aflatoxin pathway (aflR) and mycotoxin production by A. flavus, was assessed. Firstly, growth and aflatoxin production of 11 A. flavus strains were checked before selecting two strains (M30 and M144) for in-depth studies. Findings showed that there were enormous differences in aflatoxin amounts and related-gene expression between the two selected strains. Based on the results, mild temperatures, and changes in temperature during drying and storage of dried figs should be avoided. Drying should be conducted at temperatures >30 °C and close to 37 °C, while industry processing, storage, and retailing of dried figs are advisable to perform at refrigeration temperatures (<10 °C) to avoid mycotoxin production.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 119
Author(s):  
Dana H. Abdeen ◽  
Muataz A. Atieh ◽  
Belabbes Merzougui

The inhibition behavior of carbon nanotubes (CNTs) and Gum Arabic (GA) on the corrosion of 316L stainless steel in CNTs–water nanofluid under the effect of different temperatures was investigated by electrochemical methods and surface analysis techniques. Thereby, 316L stainless steel samples were exposed to CNTs–water nanofluid under temperatures of 22, 40, 60 and 80 °C. Two concentrations of the CNTs (0.1 and 1.0 wt.% CNTs) were homogenously dispersed in deionized water using the surfactant GA and tested using three corrosion tests conducted in series: open circuit test, polarization resistance test, and potentiodynamic scans. These tests were also conducted on the same steel but in solutions of GA-deionized water only. Tests revealed that corrosion increases with temperature and concentration of the CNTs–water nanofluids, having the highest corrosion rate of 32.66 milli-mpy (milli-mil per year) for the 1.0 wt.% CNT nanofluid at 80 °C. In addition, SEM observations showed pits formation around areas of accumulated CNTs that added extra roughness to the steel sample. The activation energy analysis and optical surface observations have revealed that CNTs can desorb at higher temperatures, which makes the surface more vulnerable to corrosion attack.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 77-95
Author(s):  
Siqiao Yang ◽  
Haichao Li

Activated carbon, graphite, and GO/gelatin composite films were prepared by the blending method. The properties of composites were characterized by tensile strength (TS), elongation at break (EB), water vapour permeability (WVP), water-absorption ability, contact angle, scanning electron microscopy (SEM), and moisture at different temperatures. The properties of GO/gelatin composite films were better when each of three kinds of carbon materials were used as reinforcement phases and added into the matrix gelatin. The results showed that EB and TS of GO/gelatin composite films were both excellent. The moisture of GO/gelatin composite films was greater than the others. SEM micrographs showed that GO had better compatibility and dispersibility with gelatin than activated carbon and graphite. The water absorption of GO/gelatin composite films were low, at 15 °C and 25 °C, and the WVP was low at 35 °C. The WVP of GO/gelatin composite films was lower than the others at different temperatures. The contact angle of GO/gelatin composite films was larger than the others.


2005 ◽  
Vol 73 (3) ◽  
pp. 147-161 ◽  
Author(s):  
Charumanee S. ◽  
Weiss-Greiler P. ◽  
Wolschann P. ◽  
Viernstein H. ◽  
Titwan A. ◽  
...  

Thermodynamic studies of piroxicam in aqueous solution complexed with β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD) and two β-cyclodextrin derivatives, hydroxypropyl-β-cyclodextrin (HP-P-CD) and methyl-β-cyclodextrin (Me-β-CD) were performed at different temperatures and pH values using the phase solubility method. The phase solubility diagrams of β-CD, γ-CD and HP-β-CD is of AL-type behavior, indicating the formation of 1:l complexes. The related stability constants range from β-CD > γ-CD > Me-β-CD > HP-β-CD, respectively. An Ap-type solubility diagram is observed for Me-β-CD, indicating the formation of 1:2 complexes at higher CD concentrations. From the temperature dependence of the equilibrium constants the reaction enthalpies and entropies have been determined. The contributions of the reaction entropies are small and no enthalpy-entropy-compensation is observed, except for γ-CD, where a very small negative reaction entropy could be estimated. Moreover, the influence of the pH value is rather high because the differently charged forms of piroxicam show different solubility behavior in water.


Author(s):  
Lucile Duforêt-Gaurier ◽  
David Dessailly ◽  
William Moutier ◽  
Hubert Loisel

The bulk backscattering ratio ($\tilde{b_{bp}}$) is commonly used as a descriptor of the bulk real refractive index of the particulate assemblage in natural waters. Based on numerical simulations, we analyze the impact of heterogeneity of phytoplankton cells on $\tilde{b_{bp}}$. $\tilde{b_{bp}}$ is modeled considering viruses, heterotrophic bacteria, phytoplankton, detritus, and minerals. Three study cases are defined according to the relative abundance of these different components. Two study cases represent typical situations in open ocean, outside (No-B/No-M) and inside bloom (B/No-M). The third study case is typical of coastal waters with the presence of minerals. Phytoplankton cells are modeled by a two-layered spherical geometry representing a chloroplast surrounding the cytoplasm. The $\tilde{b_{bp}}$ values are higher when heterogeneity is considered because the contribution of coated spheres to backscattering is higher than homogeneous spheres. The impact of heterogeneity is however strongly conditioned by the hyperbolic slope $\xi$ of the particle size distribution. Even if the relative concentration of phytoplankton is small (&lt;1%), $\tilde{b_{bp}}$ increases by about 60% (for $\xi=4.3$ and for the No-B/No-M water body), when the heterogeneity is taken into account, in comparison with a particulate population only composed by homogeneous spheres. As expected, heterogeneity has a much smaller impact (about 5$\%$ for $\xi=4.3$) on $\tilde{b_{bp}}$ when minerals are added.


Sign in / Sign up

Export Citation Format

Share Document