4-Thiofuranoid Glycal: Versatile Glycosyl Donor for the Selective Synthesis of -anomer of 4’-thionucleoside and its biological activities

2021 ◽  
Vol 28 ◽  
Author(s):  
Kazuhiro Haraguchi ◽  
Hiroki Kumamoto ◽  
Hiromichi Tanaka

: The first highly diastereoselective synthesis of -anomers of 4’-thionucleosides has been carried out by means of electrophilic glycosidation utilizing 3,5-O-(di-t-butylsilylene) (DTBS)-4-thiofuranoid glycal as a glycosyl donor. The resulting glycosides were transformed into ribo-, 2’-deoxy- and arabinofuranosyl nucleosides through a chemical transformation of the 2’-substituent. The additive Pummerer reaction of the glycal S-oxide gave 1,2-di-O-acetyl-3,5-O-DTBS-4-thioribofuranose. The utility of the DTBS-protected 4-thioribofuranose has been demonstrated by the preparation of 4’-thio analogues of pyrimidine- and purine-4’-thioribonucleosides on the basis of the Vorbrüggen glycosidation. Synthesis of 4’-thio-counterpart of C-nucleoside antibiotic tiazofurin has also been carried out. -Face selective hydroboration of 1-C-aryl- or 1-C-heteroaryl-glycals obtained by cross-coupling of 1-tributylstannylglycal has furnished the respective -anomer of 4’-thio-C-ribonucleosides including 4’-thio analogue of nucleoside antibiotic pseudouridine and 9-deazaadenosine. On the basis of lithiation chemistry, 1-C- and 2-C-carbon-carbon-substituted 3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3- diyl) (TIPDS)- 4-thiofuranoid glycal were synthesized. These glycals enabled us to prepare 1’-C- and 2’--C-carbon-substituted 2’-deoxy-4’-thionucleosides which include thio-counterpart of antitumor nucleoside antibiotic angustmycin C. Furthermore, 1’-C-methyl-4’-thiothymidine emerged as potent inhibitor of angiogenesis. In addition, 1’-C-methyl-4’-thiothymidine exhibited inhibitory activity against thymidine kinase deficient mutant of herpes virus more potent than that of ganciclovir. Among the 4’-substituted 4’-thiothymidines, the 4’-C-cyano- and 4’-C-ethynyl derivatives inhibited replication of HIV variant resistant to 3TC (HIVM184V) as potent as to those of the HIV-1IIIB. In terms of the value of selectivity index (SI), 4’-C-cyano-4’-thiothymidine showed 3-fold selective index (SI) than that of the corresponding thymidine derivative. Furthermore, 4’-C-ethynyl-2’-deoxy-4’-thioguanosine has a 20-fold better value (>18,200) than that of 2’-deoxyguanosine counterpart (933). Furthermore,4’-azido-4’-thiothymidine was emerged as selective and potent anti-EBV agent. In terms of antineoplastic activity, 4’-azido- and 4’-C-fluoromethyl-2’-deoxy-4’-thiocytidine inhibited proliferation of human B-cell (CCRF-SB) and T-cell leukemia (Molt-4) cell lines although the parent compound 2’-deoxy-4’-thiocytidine did not show any cytotoxicity up to 100 M. These facts concerning the biological activities suggested that replacement of the furanose oxygen with sulfur atom is a promising approach for development of less toxic antiviral and antineoplastic nucleoside antimetabolites. 4’-Thionucleoside has also superior biological properties as monomer for oligonucleotides (ONs) therapeutics. Therefore, this review provides a wide range of potential monomer for antisense ON and siRNA.

Author(s):  
Nieves Baenas ◽  
Jenny Ruales ◽  
Diego A. Moreno ◽  
Daniel Alejandro Barrio ◽  
Carla M. Stinco ◽  
...  

Andean blueberries are wild berries grown and consumed in Ecuador which contain high values of bioactive compounds, mainly anthocyanins, with powerful antioxidant activity. The aim of this study was to evaluate the profile and contents of (poly)phenols and carotenoids in Andean blueberry by HPLC-DAD-MSn and determine a wide range of its biological activities. The antioxidant capacity of this fruit was evaluated in vitro by three different methods and in vivo using the zebrafish animal model, also the toxicity effect was determined by the zebrafish embryogenesis test. Besides, the antimicrobial activity and the capacity of Andean blueberry to produce hemagglutination in blood cells were evaluated. Finally, the bioaccessibility of (poly)phenols and related antioxidant capacity were determined in the different phases of an in vitro digestion. The global results indicated no toxicity of Andean blueberry, weakly bacteriostatic activity, and high contents of anthocyanins and antioxidant capacity, which were partially bioaccesible in vitro (~ 50 % at the final intestinal step), contributing to the knowledge of its health benefits for consumers and its potential use in the food and pharmaceutical industry as functional ingredient.


2008 ◽  
Vol 3 (4) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Alejandro F. Barrero ◽  
M. Mar Herrador ◽  
Pilar Arteaga ◽  
Julieta V. Catalán

Germacrone (1) forms part of a great number of essential oils, in some of them comprising more than 20% of the total oil. This compound presents a wide range of biological activities (CNS depressant, antiinflammatory, antiulcer, antifeedant, antibacterial, antifungal, antitumor, antitussive, vasodilator, choleretic, hepatoprotector), which are analyzed. The chemical reactivity of germacrone, including cyclization reactions, and complete synthesis are presented.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 962
Author(s):  
Rengasamy Balakrishnan ◽  
Duk-Yeon Cho ◽  
In Su-Kim ◽  
Dong-Kug Choi

The Dendropanax genus is a kind of flowering plant in the family of Araliaceae that encompasses approximately 91 to 95 species. Several Dendropanax species are used as traditional medicinal plants, extensively used Korea and South America and other parts of the world. Almost every part of the plant, including the leaves, bark, roots, and stems, can be used as traditional medicine for the prevention and management of a broad spectrum of health disorders. This paper sought to summarizes the ethnopharmacological benefits, biological activities, and phytochemical investigations of plants from the genus Dendropanax, and perhaps to subsequently elucidate potential new perspectives for future pharmacological research to consider. Modern scientific literature suggests that plants of the Dendropanax genus, together with active compounds isolated from it, possess a wide range of therapeutic and pharmacological applications, including antifungal, anti-complement, antioxidant, antibacterial, insect antifeedant, cytotoxic, anti-inflammatory, neuroprotective, anti-diabetic, anti-cancer, and anti-hypouricemic properties. The botanical descriptions of approximately six to 10 species are provided by different scientific web sources. However, only six species, namely, D. morbiferus, D. gonatopodus, D. dentiger, D. capillaris, D. chevalieri, and D. arboreus, were included in the present investigation to undergo phytochemical evaluation, due to the unavailability of data for the remaining species. Among these plant species, a high concentration of variable bioactive ingredients was identified. In particular, D. morbifera is a traditional medicinal plant used for the multiple treatment purposes and management of several human diseases or health conditions. Previous experimental evidence supports that the D. morbifera species could be used to treat various inflammatory disorders, diarrhea, diabetes, cancer, and some microbial infections. It has recently been reported, by our group and other researchers, that D. morbifera possesses a neuroprotective and memory-enhancing agent. A total of 259 compounds have been identified among six species, with 78 sourced from five of these species reported to be bioactive. However, there is no up-to-date information concerning the D. morbifera, its different biological properties, or its prospective benefits in the enhancement of human health. In the present study, we set out to conduct a comprehensive analysis of the botany, traditional medicinal history, and medicinal resources of species of the Dendropanax genus. In addition, we explore several phytochemical constituents identified in different species of the Dendropanax genus and their biological properties. Finally, we offer comprehensive analysis findings of the phytochemistry, medicinal uses, pharmacological actions, and a toxicity and safety evaluation of the D. morbifera species and its main bioactive ingredients for future consideration.


2019 ◽  
Vol 16 (33) ◽  
pp. 524-529
Author(s):  
G E DELGADO ◽  
P DELGADO-NIÑO ◽  
R LOBATON ◽  
S-M LIEW ◽  
J JAMALIS

Pyrazolines are important agents in medicinal chemistry as a promising scaffold for structural modification and drug development studies due to their wide range of biological activities such as anticancer, antifungal, antibacterial, antidepressant, anticonvulsant, antitubercular, antioxidant, antileishmanial and antiinflammatory activity. These heterocyclic compounds can be prepared by refluxing chalcone with hydrazine hydrate and anhydrous sodium acetate in the presence of glacial acetic acid. The structural characterization, molecular and crystalline structure, of these organic compounds, allows studying their biological properties to know their potential applications. Hence the use of XRPD is very important because it allows obtaining a record to be used as a method of identification. The aim of this investigation was to obtain and reported good quality Xray powder diffraction data the pyrazoline compound 1-(3-(4-iodophenyl)-5-(3-methyl thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)ethan-1-one, which could be used as potential anti-microbial and anti-cancer agent. The powder pattern was indexed in the monoclinic space group I2/a with unit cell parameters a = 25.440(5) Å, b = 5.124(2) Å, c = 26.261(6) Å, b = 105.75(2)° and figures of merit M20= 38.2 and F20= 66.6 (0.00573, 53). All measured lines were indexed and are consistent with the monoclinic space group. The powder pattern will be included in the Powder Diffraction File database to be used as a reference.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257071
Author(s):  
Ghada Mahmoud Abdelwahab ◽  
Amira Mira ◽  
Yuan-Bin Cheng ◽  
Tarek A. Abdelaziz ◽  
Mohamed Farid I. Lahloub ◽  
...  

Aspergillus niger metabolites exhibited a wide range of biological properties including antioxidant and neuro-protective effects and some physical properties as green synthesis of silver nanoparticles AgNP. The present study presents a novel evidence for the various biological activities of green synthesized AgNPs. For the first time, some isolated naphtho-γ-pyrones from marine-derived Aspergillus niger, flavasperone (1), rubrofusarin B (2), aurasperone A (3), fonsecinone A (4) in addition to one alkaloid aspernigrin A (7) were invistigated for their inhibitory activity of acetylcholine esterase AChE, a hallmark of Alzheimer’s disease (AD). The ability to synthesize AgNPs by compounds 3, 4 and 7 has been also tested for the first time. Green synthesized AgNPs were well-dispersed, and their size was ranging from 8–30 nm in diameter, their morphology was obviously spherical capped with the organic compounds. Further biological evaluation of their AChE inhibitory activity was compared to the parent compounds. AgNps dramatically increased the inhibitory activity of Compounds 4, 3 and 7 by 84, 16 and 13 fold, respectively to be more potent than galanthamine as a positive control with IC50 value of 1.43 compared to 0.089, 0.311 and 1.53 of AgNPs of Compounds 4, 3 and 7, respectively. Also compound 2 showed moderate inhibitory activity. This is could be probably explained by closer fitting to the active sites or the synergistic effect of the stabilized AgNPs by the organic compouds. These results, in addition to other intrinsic chemical and biological properties of naphtho-γ-pyrones, suggest that the latter could be further explored with a view towards other neuroprotective studies for alleviating AD.


2020 ◽  
Vol 20 (16) ◽  
pp. 1633-1652
Author(s):  
Meng Hao ◽  
Min Lv ◽  
Hui Xu

Andrographolide, a labdane diterpenoid, is extracted and isolated from the plants of Andrographis paniculata. Andrographolide and its derivatives exhibited a wide range of biological properties, including anticancer activity, antibacterial activity, hepatoprotective activity, antiinflammatory activity, antiviral activity, antimalarial activity, antidiabetic activity, insecticidal activity, etc. As a continuation, this review aims at giving an overview of the recent advances (from 2015 to 2018) of andrographolide and its derivatives with regard to bioactivities, mechanisms of action, structural modifications, and structure-activity relationships.


2019 ◽  
Vol 16 (1) ◽  
pp. 17-37 ◽  
Author(s):  
Jaskirat Kaur ◽  
Divya Utreja ◽  
Ekta ◽  
Nisha Jain ◽  
Shivali Sharma

Background:Heterocyclic compounds containing nitrogen have been known to possess a very important role in the field of medicinal chemistry. Indole and its derivatives displayed a wide range of biological properties such as anti-inflammatory, analgesic, anti-microbial, anti-convulsant, antidepressant, anti-diabetic, antihelmintic and anti-allergic activities etc. The diverse biological activities exhibited by compounds containing indole moiety has provided the impetus to explore its anti-microbial activity in order to save the valuable life of patients. </P><P> Objective: The review focuses on the advances in the synthesis of indole derivatives and antimicrobial properties exhibited by them.Conclusion:A great deal of work has been done in order to synthesize indole derivatives and to evaluate antimicrobial potential, as indicated by the review. The information provided in this article may be helpful for the researchers for the development of efficient antimicrobial drugs.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ruhi Ali ◽  
Nadeem Siddiqui

In recent years heterocyclic compounds analogues and derivatives have attracted wide attention due to their useful biological and pharmacological properties. Benzothiazole is among the usually occurring heterocyclic nuclei in many marine as well as natural plant products. Benzothiazole is a privileged bicyclic ring system with multiple applications. It is known to exhibit a wide range of biological properties including anticancer, antimicrobial, and antidiabetic, anticonvulsant, anti-inflammatory, antiviral, antitubercular activities. A large number of therapeutic agents are synthesized with the help of benzothiazole nucleus. During recent years there have been some interesting developments in the biological activities of benzothiazole derivatives. These compounds have special significance in the field of medicinal chemistry due to their remarkable pharmacological potentialities. This review is mainly an attempt to present the research work reported in the recent scientific literature on different biological activities of benzothiazole compounds.


2020 ◽  
Vol 6 (4) ◽  
pp. 220
Author(s):  
Tao Su ◽  
Mei Han ◽  
Dan Cao ◽  
Mingyue Xu

Plant host defense peptides (HDPs), also known as antimicrobial peptides (AMPs), are regarded as one of the most prevalent barriers elaborated by plants to combat various infective agents. Among the multiple classes of HDPs, the Snakin class attracts special concern, as they carry 12 cysteine residues, being the foremost cysteine-rich peptides of the plant HDPs. Also, their cysteines are present at very highly conserved positions and arranged in an extremely similar way among different members. Like other plant HDPs, Snakins have been shown to exhibit strong antifungal and antibacterial activity against a wide range of plant pathogens. Moreover, they display diversified biological activities in many aspects of plant growth and the development process. This review is devoted to present the general characters of the Snakin class of plant HDPs, as well as the individual features of different Snakin family members. Specifically, the sequence properties, spatial structures, distributions, expression patterns and biological activities of Snakins are described. In addition, further detailed classification of the Snakin family members, along with their possible mode of action and potential applications in the field of agronomy and pathology are discussed.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 308
Author(s):  
Chatragadda Ramesh ◽  
Bhushan Rao Tulasi ◽  
Mohanraju Raju ◽  
Narsinh Thakur ◽  
Laurent Dufossé

Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisition of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, “tambjamines”, produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily originated from their bacterial symbionts, which are involved in their chemical defense function, indicating the ecological role of symbiotic microbial association with tunicates. This review has garnered comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts. Various sections covered in this review include tunicates’ ecological functions, biological activities, such as antimicrobial, antitumor, and anticancer activities, metabolic origins, utilization of invasive tunicates, and research gaps. Apart from the literature content, 20 different chemical databases were explored to identify tunicates-derived MNPs. In addition, the management and exploitation of tunicate resources in the global oceans are detailed for their ecological and biotechnological implications.


Sign in / Sign up

Export Citation Format

Share Document