Long Non-coding RNAs in Metabolic and Inflammatory Pathways in Obesity

2020 ◽  
Vol 26 (27) ◽  
pp. 3317-3325
Author(s):  
Yue Shi ◽  
Jiayuan Qu ◽  
Liyue Gai ◽  
Ding Yuan ◽  
Chengfu Yuan

Background: In recent decades, the incidence of obesity has been rising globally. Obesity can often cause various inflammatory reactions, resulting in several diseases that threaten public health. The purpose of this review is to explore the role of long non-coding RNAs in metabolic obesity and find new targets for the prevention and treatment of metabolic diseases. Methods: We described the relationship between obesity and inflammation, reviewed several signaling pathways in metabolic inflammation, and summarized some of the long non-coding RNAs and their targets associated with metabolic inflammation. The related studies were retrieved through a systematic search of the PubMed database. Result: Metabolic stress during obesity can cause inflammation through several metabolic pathways. Many long non-coding RNAs can affect the progression of metabolic inflammation by affecting different pathways. Conclusion: Downregulation or antagonization of long non-coding RNAs in metabolic pathways may provide new ideas and therapeutic targets for the prevention and treatment of metabolic inflammation.

Toxins ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 50
Author(s):  
Satoshi Kumakura ◽  
Emiko Sato ◽  
Akiyo Sekimoto ◽  
Yamato Hashizume ◽  
Shu Yamakage ◽  
...  

Nicotinamide adenine dinucleotide (NAD+) supplies energy for deoxidation and anti-inflammatory reactions fostering the production of adenosine triphosphate (ATP). The kidney is an essential regulator of body fluids through the excretion of numerous metabolites. Chronic kidney disease (CKD) leads to the accumulation of uremic toxins, which induces chronic inflammation. In this study, the role of NAD+ in kidney disease was investigated through the supplementation of nicotinamide (Nam), a precursor of NAD+, to an adenine-induced CKD mouse model. Nam supplementation reduced kidney inflammation and fibrosis and, therefore, prevented the progression of kidney disease. Notably, Nam supplementation also attenuated the accumulation of glycolysis and Krebs cycle metabolites that occurs in renal failure. These effects were due to increased NAD+ supply, which accelerated NAD+-consuming metabolic pathways. Our study suggests that Nam administration may be a novel therapeutic approach for CKD prevention.


2021 ◽  
Vol 22 (6) ◽  
pp. 2904
Author(s):  
Peiyu Zhu ◽  
Shuaiyin Chen ◽  
Weiguo Zhang ◽  
Guangcai Duan ◽  
Yuefei Jin

Enteroviruses (EVs) are common RNA viruses that can cause various types of human diseases and conditions such as hand, foot, and mouth disease (HFMD), myocarditis, meningitis, sepsis, and respiratory disorders. Although EV infections in most patients are generally mild and self-limiting, a small number of young children can develop serious complications such as encephalitis, acute flaccid paralysis, myocarditis, and cardiorespiratory failure, resulting in fatalities. Established evidence has suggested that certain non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the occurrence and progression of many human diseases. Recently, the involvement of ncRNAs in the course of EV infection has been reported. Herein, the authors focus on recent advances in the understanding of ncRNAs in EV infection from basic viral pathogenesis to clinical prospects, providing a reference basis and new ideas for disease prevention and research directions.


2014 ◽  
Vol 995 ◽  
pp. 1-27 ◽  
Author(s):  
Mahbuba Rahman ◽  
M. Rubayet Hasan

Pentose phosphate (PP) pathway, which is ubiquitously present in all living organisms, is one of the major metabolic pathways associated with glucose metabolism. The most important functions of this pathway includes the generation of reducing equivalents in the form of NADPH for reductive biosynthesis, and production of ribose sugars for the biosynthesis of nucleotides, amino acids, and other macromolecules required by all living cells. Under normal conditions of growth, PP pathway is important for cell cycle progression, myelin formation, and the maintenance of the structure and function of brain, liver, cortex and other organs. Under diseased conditions, such as in cases of many metabolic, neurological or malignant diseases, pathological mechanisms augment due to defects in the PP pathway genes. Adoption of alternative metabolic pathways by cells that are metabolically abnormal, or malignant cells that are resistant to chemotherapeutic drugs often plays important roles in disease progression and severity. Accordingly, the PP pathway has been suggested to play critical roles in protecting cancer or abnormal cells by providing reduced environment, to protect cells from oxidative damage and generating structural components for nucleic acids biosynthesis. Novel drugs that targets one or more components of the PP pathway could potentially serve to overcome challenges associated with currently available therapeutic options for many metabolic and non-metabolic diseases. However, careful designing of drugs is critical that takes into the accounts of cell’s broader genomic, proteomic and metabolic contexts under consideration, in order to avoid undesirable side-effects. In this review, we discuss the role of PP pathway under normal and abnormal physiological conditions and the potential of the PP pathway as a target for new drug development to treat metabolic and non-metabolic diseases.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2621
Author(s):  
Yun Kyung Lee ◽  
Yu Seong Chung ◽  
Ji Hye Lee ◽  
Jin Mi Chun ◽  
Jun Hong Park

For more than three decades, numerous studies have demonstrated the function of p53 in cell cycle, cellular senescence, autophagy, apoptosis, and metabolism. Among diverse functions, the essential role of p53 is to maintain cellular homeostatic response to stress by regulating proliferation and apoptosis. Recently, adipocytes have been studied with increasing intensity owing to the increased prevalence of metabolic diseases posing a serious public health concern and because metabolic dysfunction can directly induce tumorigenesis. The prevalence of metabolic diseases has steadily increased worldwide, and a growing interest in these diseases has led to the focus on the role of p53 in metabolism and adipocyte differentiation with or without metabolic stress. However, our collective understanding of the direct role of p53 in adipocyte differentiation and function remains insufficient. Therefore, this review focuses on the newly discovered roles of p53 in adipocyte differentiation and function.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Sonia Sifuentes-Franco ◽  
Fermín Paul Pacheco-Moisés ◽  
Adolfo Daniel Rodríguez-Carrizalez ◽  
Alejandra Guillermina Miranda-Díaz

Diabetic polyneuropathy (DPN) is the most frequent and prevalent chronic complication of diabetes mellitus (DM). The state of persistent hyperglycemia leads to an increase in the production of cytosolic and mitochondrial reactive oxygen species (ROS) and favors deregulation of the antioxidant defenses that are capable of activating diverse metabolic pathways which trigger the presence of nitro-oxidative stress (NOS) and endoplasmic reticulum stress. Hyperglycemia provokes the appearance of micro- and macrovascular complications and favors oxidative damage to the macromolecules (lipids, carbohydrates, and proteins) with an increase in products that damage the DNA. Hyperglycemia produces mitochondrial dysfunction with deregulation between mitochondrial fission/fusion and regulatory factors. Mitochondrial fission appears early in diabetic neuropathy with the ability to facilitate mitochondrial fragmentation. Autophagy is a catabolic process induced by oxidative stress that involves the formation of vesicles by the lysosomes. Autophagy protects cells from diverse stress factors and routine deterioration. Clarification of the mechanisms involved in the appearance of complications in DM will facilitate the selection of specific therapeutic options based on the mechanisms involved in the metabolic pathways affected. Nowadays, the antioxidant agents consumed exogenously form an adjuvant therapeutic alternative in chronic degenerative metabolic diseases, such as DM.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2220
Author(s):  
Ramachandran Chelliah ◽  
Shuai Wei ◽  
Eric Banan-Mwine Daliri ◽  
Fazle Elahi ◽  
Su-Jung Yeon ◽  
...  

Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts bioactive peptides and protein sequences produced through proteolysis or food processing. Unique food protein fragments can improve human health and avoid metabolic diseases, inflammation, hypertension, obesity, and diabetes mellitus. This review focuses on drug targets and fundamental mechanisms of bioactive peptides on metabolic syndromes, namely obesity and type 2 diabetes, to provide new ideas and knowledge on the ability of bioactive peptide to control metabolic syndromes.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xin Chi ◽  
Calvin Q. Pan ◽  
Shunai Liu ◽  
Danying Cheng ◽  
Ziwen Cao ◽  
...  

When alcohol-related liver disease occurs, the number and composition ratio of intestinal microorganisms will accordingly change. The alcohol-induced changes in the intestinal microbiota play a pivotal role in the process of developing the alcohol-related liver disease through the translocation of microbial products due to increased intestinal permeability. In recent years, therapeutic interventions with a concentration on regulating intestinal microbiota have been conducted for patients with alcohol-related liver disease. We aimed to provide a critical review and updates on the prevention and treatment of alcohol-related liver disease through regulating intestinal microbiota. A literature search was performed on the PubMed database for studies published in English about the therapeutic intervention with microbiota using animal models and patients with alcohol-related liver disease (1/2010–4/2020). The accumulating pieces of evidence suggest that the therapeutic use of probiotics, prebiotics, antibiotics, phages, or fecal microbial transplantation may have several influences on alcohol-related liver disease patients. Emergent data unveiled that these interventions can further regulate the composition of intestinal microbiota, minimize the negative impact of microbiota on the liver, and prevent disease progression from mild to severe alcoholic hepatitis, fibrosis, cirrhosis, or even liver cancer. The current review provides updates on the advances of therapeutic interventions with the effects of regulating intestinal microbiota on patients who have alcohol-related liver disease. In addition, the data gaps and research directions on further exploration of the role of intestinal microbiota for the management of the alcohol-related liver disease are also discussed.


2020 ◽  
Vol 21 (21) ◽  
pp. 8337
Author(s):  
Kang-Hoon Lee ◽  
Hyeon-Ji Hwang ◽  
Je-Yoel Cho

Cholesterol is an essential cell component that functions to create and maintain all kinds of cell membranes and lipoprotein particles. It is crucial to maintain the proper amount of cholesterol at both the cellular and systemic level. Recently, the importance of cholesterol has been reported not only in various cell development processes but also in the development of diseases. Furthermore, the involvement of long non-coding RNAs (lncRNAs), which are regarded as important epigenetic regulators in gene expression, has also been reported in cholesterol homeostasis. It is thus necessary to summarize the research on lncRNAs related to cholesterol with increased interest. This review organized the role of lncRNAs according to the major issues in cholesterol homeostasis: efflux, metabolism and synthesis, and disease process.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Eter Natelauri ◽  
Tea Natelauri ◽  
Zurab Tcheishvili

Background: Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected people can develop severe inflammatory reactions, which can lead to pneumonia, acute respiratory distress syndrome, and death. The use of radiation in the treatment of COVID-19 induced pneumonia sounds unusual, but is currently being investigated in clinical trials. Some early results have been already published. This study aims to review existing information about the role of radiation therapy in the Treatment of COVID-19 induced pneumonia. Methods and Materials: An electronic search of the PubMed database and additional resources ware used to obtain key literature. The following search terms were used: “Radiation therapy” and “COVID-19”. Results: Search resulted in 137 citations. The first phase of screening identified 13 articles, from which nine articles were identified to be relevant for the second phase of screening. Six articles were included in the review. Conclusion: Low-dose radiotherapy has been considered as a potential treatment for COVID-19 induced pneumonia. The benefits of LDRT for pneumonia have been reported since the early 20th. However knowledge is lacking, hence further investigation of the pros and cons of this method is strongly recommended. LDRT as a prospective cure of COVID-19 induced pneumonia is worthy of research in a clinical setting.


2021 ◽  
Vol 22 (14) ◽  
pp. 7716
Author(s):  
Caterina Formichi ◽  
Laura Nigi ◽  
Giuseppina Emanuela Grieco ◽  
Carla Maccora ◽  
Daniela Fignani ◽  
...  

The rising prevalence of metabolic diseases related to insulin resistance (IR) have stressed the urgent need of accurate and applicable tools for early diagnosis and treatment. In the last decade, non-coding RNAs (ncRNAs) have gained growing interest because of their potential role in IR modulation. NcRNAs are variable-length transcripts which are not translated into proteins but are involved in gene expression regulation. Thanks to their stability and easy detection in biological fluids, ncRNAs have been investigated as promising diagnostic and therapeutic markers in metabolic diseases, such as type 2 diabetes mellitus (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). Here we review the emerging role of ncRNAs in the development of IR and related diseases such as obesity, T2D and NAFLD, and summarize current evidence concerning their potential clinical application.


Sign in / Sign up

Export Citation Format

Share Document