Synthesis, Screening and Docking Analysis of Hispolon Pyrazoles and Isoxazoles as Potential Antitubercular Agents

2019 ◽  
Vol 19 (9) ◽  
pp. 662-682 ◽  
Author(s):  
Neduri V. Balaji ◽  
Bollikolla HariBabu ◽  
Vanga U. Rao ◽  
Gottumukkala V. Subbaraju ◽  
Kurre P. Nagasree ◽  
...  

Background: Hispolons are natural products known to possess cytoprotective, antioxidant and anti-cancer activities. We have found recently anti TB activity in these compounds. Efforts were made to optimize the structure with bioisosteric replacement of 1,3-diketo functional group with the corresponding pyrazole and isoxazole moieties. Objective: The goal of this paper is designing new hispolon isoxazole and pyrazole and the evaluation of their biological activities. Methods: The designed compounds were prepared using classical organic synthesis methods. The anti- TB activity was evaluated using the MABA method. Results: A total of 44 compounds were synthesized (1a- 1v and 2a-2v) and screened for anti TB activity and antibacterial activity. The compounds 1b and 1n showed the highest potency with MIC 1.6µg/mL against M. tuberculosis H37Rv. Conclusion: Bioisosteric replacement of 1,3-diketo functional group in hispolons with pyrazole or isoxazole rings have resulted in potent anti TB molecules. Docking simulations of these compounds on mtFabH enzyme resulted in a clear understanding of bioactivity profiles of these compounds. Docking scores are in good agreement with the anti TB activity obtained for these compounds. Computational studies and in vitro screening results indicate mtFabH as the probable target of these compounds.

2018 ◽  
Vol 15 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Parvesh Singh ◽  
Nomandla Ngcoya ◽  
Ramgopal Mopuri ◽  
Nagaraju Kerru ◽  
Neha Manhas ◽  
...  

Background: Diabetes Mellitus (DM) is a complex metabolic disease illustrated by abnormally high levels of plasma glucose or hyperglycaemia. Accordingly, several α-glucosidase inhibitors have been developed for the treatment of diabetes and other degenerative disorders. While, a coumarin ring has the privilege to represent numerous natural and synthetic compounds with a wide spectrum of biological activities e.g. anti-cancer, anti-HIV, anti-viral, anti-malarial, anti-microbial, anti-convulsant, anti-hypertensive properties. Besides this, coumarins have also shown potential to inhibit α-glucosidase leading to a generation of new promising antidiabetic agents. However, the testing of O-substituted coumarins for α-glucosidase inhibition has evaded the attention of medicinal chemists. Methods: For O-alkylation/acetylation reactions, the hydroxyl coumarins (A-B) initially activated by K2CO3 in dry DMF were reacted with variedly substituted haloalkanes at room temperature under nitrogen. The synthesized compounds were tested for their α-glucosidase (from Saccharomyces cerevisiae) inhibitory activity and anti-oxidant activity using DPPH radical scavenging activity. In silico docking simulations were conducted using CDocker module in DS (Accelrys) to explore the binding modes of the representative compounds in the catalytic site of α-glucosidase. Results: All the coumarin analogues (A1, B1, A2-A10, B2-B8) including their precursors (A-B) were evaluated for their in vitro α-glucosidase inhibition using acarbose as a standard inhibitor. All the mono O-alkylated coumarins (except A1) showed significant (p <0.05) α-glucosidase inhibition relative to the hydroxyl coumarin (A) with IC50 values ranging between 11.084±0.117 to 145.24± 29.22 µg/mL. Compound 7-(benzyloxy)-4, 5-dimethyl-2H-chromen-2-one (A9) bearing a benzyl group (Ph-CH2-) at position 7 showed a remarkable (p <0.05) increase in the activity (IC50 = 11.084±0.117 µg/mL), almost four-fold more than acarbose (IC50 = 40.578±5.999 µg/mL). The introduction of –NO2 group dramatically improved the anti-oxidant activity of coumarin, while the O-alkylation/acetylation decreased the activity. Conclusion: The present study describes the synthesis of functionalized coumarins and their evaluation for α-glucosidase inhibition and antioxidant activity under in vitro conditions. Based on IC50 data, the mono O-alkylated coumarins were observed to be stronger inhibitors of α-glucosidase with respect to their bis O-alkylated analogues. Coumarin (A9) bearing O-benzyloxy group displayed the strongest α-glucosidase inhibition, even higher than the standard inhibitor acarbose. The coumarin (A10) bearing –NO2 group showed the highest anti-oxidant activity amongst the synthesized compounds, almost comparable to the ascorbic acid. Finally, in silico docking simulations revealed the role of hydrogen bonding and hydrophobic forces in locking the compounds in catalytic site of α-glucosidase.


2020 ◽  
Vol 7 (1) ◽  
pp. 191316 ◽  
Author(s):  
Maloba M. M. Lobe ◽  
Simon M. N. Efange

Both tetrahydroisoquinolines (THIQs) and oxindoles (OXs) display a broad range of biological activities including anti-cancer activity, and are therefore recognized as two privileged scaffolds in drug discovery. In the present study, 24 3′,4′-dihydro-2′H-spiro[indoline-3,1′-isoquinolin]-2-ones, designed as molecular hybrids of THIQ and OX, were synthesized and screened in vitro against 59 cell lines in the NCI-60 screen. Twenty compounds displayed weak to moderate inhibition of cell proliferation; among them, three compounds displayed at least 50% inhibition of cell proliferation. The compounds appeared to target primarily renal cell cancer lines; however, leukaemia, melanoma, non-small cell lung cancer, prostate, ovarian and even breast cancer cell lines were also affected. Therefore, this class of spirooxindoles may provide useful leads in the search for new anti-cancer agents.


2019 ◽  
Vol 20 (17) ◽  
pp. 4238 ◽  
Author(s):  
Yaqi Ren ◽  
Chunlan Wang ◽  
Jiakun Xu ◽  
Shuaiyu Wang

Cafestol and kahweol are natural diterpenes extracted from coffee beans. In addition to the effect of raising serum lipid, in vitro and in vivo experimental results have revealed that the two diterpenes demonstrate multiple potential pharmacological actions such as anti-inflammation, hepatoprotective, anti-cancer, anti-diabetic, and anti-osteoclastogenesis activities. The most relevant mechanisms involved are down-regulating inflammation mediators, increasing glutathione (GSH), inducing apoptosis of tumor cells and anti-angiogenesis. Cafestol and kahweol show similar biological activities but not exactly the same, which might due to the presence of one conjugated double bond on the furan ring of the latter. This review aims to summarize the pharmacological properties and the underlying mechanisms of cafestol-type diterpenoids, which show their potential as functional food and multi-target alternative medicine.


2020 ◽  
Vol 21 (21) ◽  
pp. 8355
Author(s):  
Laísa de P. Fernandes ◽  
Júlia M. B. Silva ◽  
Daniel O. S. Martins ◽  
Mariana B. Santiago ◽  
Carlos H. G. Martins ◽  
...  

Considering our previous findings on the remarkable activity exhibited by cobalt(III) with 2-acetylpyridine-N(4)-R-thiosemicarbazone (Hatc-R) compounds against Mycobacterium tuberculosis, the present study aimed to explored new structure features of the complexes of the type [Co(atc--R)2]Cl, where R = methyl (Me, 1) or phenyl (Ph, 2) (13C NMR, high-resolution mass spectrometry, LC–MS/MS, fragmentation study) together with its antibacterial and antiviral biological activities. The minimal inhibitory and minimal bactericidal concentrations (MIC and MBC) were determined, as well as the antiviral potential of the complexes on chikungunya virus (CHIKV) infection in vitro and cell viability. [Co(atc-Ph)2]Cl revealed promising MIC and MBC values which ranged from 0.39 to 0.78 µg/mL in two strains tested and presented high potential against CHIKV by reducing viral replication by up to 80%. The results showed that the biological activity is strongly influenced by the peripheral substituent groups at the N(4) position of the atc-R1− ligands. In addition, molecular docking analysis was performed. The relative binding energy of the docked compound with five bacteria strains was found in the range of −3.45 and −9.55 kcal/mol. Thus, this work highlights the good potential of cobalt(III) complexes and provide support for future studies on this molecule aiming at its antibacterial and antiviral therapeutic application.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Sedigheh Akbarnezhad Ghareh Lar ◽  
Nakisa Zarrabi Ahrabi ◽  
Yasin SarveAhrabi

Background: Acinetobacter bumanni is one of the most common opportunistic pathogens in health centers that is resistant to many antibiotics due to biofilm production. 1, 3, 4-oxadiazoles have a wide range of biological activities. Objectives: The aim of this research was to examine the impact of new 1, 3, 4-oxadiazole derivatives on the expression of biofilm-associated surface protein (Bap), playing an important role in promoting the biofilm formation ability of A. baumannii strains. Methods: Derivatives of 1, 3, 4-oxadiazole were synthesized through a one-step synthesis. A. baumannii strains were identified and isolated in the laboratory. The antimicrobial properties of the synthesized materials against the isolated strains were investigated. DNA, RNA, and cDNA were extracted, and the relative expression of BAP gene in A. baumannii isolates was evaluated by real-time polymerase chain reaction. Results: The compound with methoxyphenyl functional group with MIC = 62.50 mg/mL had the best inhibitory performance among all derivatives. Also, the combination of 4i reduced the expression of the Bap gene by about 24 times, but it had no effect on the expression of the 16srRNA housekeeping gene. Conclusions: 1, 3, 4-oxadiazole derivatives, especially the methoxyphenyl functional group, act as an inhibitor of bacterial biofilm formation and have the potential to be used in the pharmaceutical and biological industries.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4941
Author(s):  
Abdelwahab Khalil ◽  
Basem H. Elesawy ◽  
Tarek M. Ali ◽  
Osama M. Ahmed

Insects of the order Hymenoptera have a defensive substance that contains many biologically active compounds. Specifically, venom from honeybees (Apis mellifera) contains many enzymes and peptides that are effective against various diseases. Different research papers stated the possibility of using bee venom (a direct bee sting or in an injectable form) in treating several complications; either in vivo or in vitro. Other reports used the active fractions of bee venom clinically or at labratory scale. Many reports and publications have stated that bee venom and its constituents have multiple biological activities including anti-microbial, anti-protozoan, anti-cancer, anti-inflammatory, and anti-arthritic properties. The present review aims to refer to the use of bee venom itself or its fractions in treating several diseases and counteracting drug toxicities as an alternative protocol of therapy. The updated molecular mechanisms of actions of bee venom and its components are discussed in light of the previous updated publications. The review also summarizes the potential of venom loaded on nanoparticles as a drug delivery vehicle and its molecular mechanisms. Finally, the products of bee venom available in markets are also demonstrated.


2020 ◽  
Vol 27 (41) ◽  
pp. 6910-6925 ◽  
Author(s):  
Konstantina Papakosta ◽  
Maria-Eleni Grafakou ◽  
Christina Barda ◽  
Ioannis V. Kostopoulos ◽  
Ourania Tsitsilonis ◽  
...  

Background: The genus Achillea L. is rich in bioactive sesquiterpenes and flavonoids; most of the studied species exhibit several biological activities and are used as emmenagogue, wound healing and analgesic agents. Some species are also used in local folklore medicine. Objective: Following a literature survey, we discuss the anti-cancer properties of Achillea species, taking into consideration ethnopharmacological data on their use in traditional medicine for the treatment of cancer. In addition, we screened extracts and isolated secondary metabolites from A. coarctata for cytotoxicity, upon information based on local traditional medicine. The plant was collected in Kozani (Northern Greece), where it is locally used for treating gastrointestinal disorders, including stomach cancer. Methods: A selection of the relevant data was performed through a search in PubMed, Scopus, Google Scholar and Science Direct databases. In addition, extracts and isolated compounds from A. coarctata were tested for their in vitro activity against the human cancer cell lines MCF-7 and HeLa. Conclusion: The genus Achillea L. is a valuable source of bioactive secondary metabolites. The most significant outcome of the investigation of medicinal plants is the documentation and the assessment of the traditional information and its use and perspectives in the light of modern pharmacology.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3708
Author(s):  
Serge Mignani ◽  
Jérôme Bignon ◽  
Xiangyang Shi ◽  
Jean-Pierre Majoral

Based on phenotypic screening, the major advantages of phosphorus dendrimers and dendrons as drugs allowed the discovery of new therapeutic applications, for instance, as anti-cancer and anti-tuberculosis agents. These biological activities depend on the nature of the chemical groups (neutral or cationic) on their surface as well as their generation. As lessons to learn, in the oncology domain, the increase in the generation of metallo-dendrimers is in the same direction as the anti-proliferative activities, in contrast to the development of polycationic dendrimers, where the most potent anti-tuberculosis phosphorus dendrimer was observed to have the lowest generation (G0). The examples presented in this original analysis of phosphorus dendrimers and dendrons provide support for the lessons learned and for the development of new nanoparticles in nanomedicine.


2020 ◽  
Vol 32 (7) ◽  
pp. 1534-1542
Author(s):  
BHARATH SAMANNAN ◽  
JOTHI SELVAM ◽  
JEYABALAN THAVASIKANI

A novel composite of curcumin diketimine (CDK)-heteropolyacid (where HPA = vanadium doped Keggin anion and CDK = curcuminbenzoguanamine) had been synthesized. The hybrid composites were investigated by analytical methods such as elemental analysis, FTIR, 13C NMR, SEM, EDS, XRD, DSC-TGA, ESR spectral studies and biological activities. Encapsulated hybrid composite also studied (in vitro) against MCF-7 cancer cell lines. ESR results showed that the presence of (V4+) ion nitrogen ligation in the composite. 13C NMR of CDK ligand value of 183.37 and 55.06 ppm corresponds to (2=N) and (O-CH3) may be due to the composites. The morphology of molybdovanadate (HPA) showed a structure of self-assembled round shape of a diameter around 1 μm.


Sign in / Sign up

Export Citation Format

Share Document