Green Approaches for Cancer Management: an Effective Tool for Health Care

Author(s):  
Jitendra Gupta ◽  
Ashima Ahuja ◽  
Reena Gupta

Background: Cancer is one of the leading causes of an increasing number of death incidences in modern society. As the population increases, there is increased thrust for screening newer anticancer (phytoconstituents) agents to manage cancers. Around 35000 herbal phytoconstituents are obtained from plants, animals and marine sources to create awareness of green therapy in managing, reducing, minimizing side effects of modern chemotherapeutics and radiation therapy. The herbal plants are the richest sources of natural remedies and bioactive compounds that promote medicines' alternative systems as a green approach for managing various cancers. The terpenoids, saponins, volatile oils, and flavonoid phytoconstituents are most efficiently used to manage cancer with minimal side effects. Objective: The objectives of the present study are to investigate the efficacious, potent and safe use of herbal phytoconstituents extracts in the management of cancers and study their mechanism of action through alteration of transcription proteins, blocking G-2/M phase, distortion of tubulin structure, generation of reactive oxygen species, lipid peroxidation, cell cycle arrest, anti-proliferation induced cell apoptosis for target specific cancer treatment. The information was collected from databases such as ScienceDirect, PubMed, Google Scholar, Academia, MedLine, and WoS. Methods: The Literature was surveyed and screened keywords like cancer therapeutics, metastasis, proliferation, cell apoptosis, cell lines, phytoconstituents for cancer management, and related disorders. Results: The findings suggested that the crude extracts act as an antioxidant, free radical scavenger, or anti-aging agent exploited in the management of cancers along with treatment of other infectious diseases like ulcers, gout, liver diseases, respiratory tract infection, renal disorders, blood disorders, CVD, anti-inflammatory and several wound infections. Conclusion: The phytoactive moieties having herbal extracts help improve the compromised immunity status of affected patients and provide measures for scientific studies of newer anticancer agents in herbal industries.

2020 ◽  
Vol 22 ◽  
Author(s):  
Ruby Varghese ◽  
Yogesh Bharat. Dalvi

Abstract:: Medicinal plants and mushrooms have alwaysfascinated the world as an attractive source of natural compounds for cancer therapy. From ancient times, they have been valued as gourmet food and folk medicine in Oriental practice. For over 40 years, world has witnessed the overwhelming interest of western scientific fraternity in pharmaceutical potential of natural products in combating cancer. The plants and mushrooms credited with success against angiogenesis and cancer metastasis belong to certain Plants including Catharanthus roseus, Aloe Vera,Annona muricata,Curcuma longa, Withania somnifera, and Berberis and mushrooms such as Agaricus,Antrodia,Ganoderma,Grifolafrondosa,Hericiumerinaceus,Phel-linuslinteus, and Trametesversicolor /Coriolusversicolor. The anti-cancer compounds play a pivotal role as free radical scavenger and reactive oxygen species inducer, mitotic spindle kinase inhibitor, anti-mitotic, angiogenesis inhibitor, topoi-somerase inhibitor, apoptosis inducers, and eventually checking cancer invasion, migration and proliferation. The present review updates and focuses on the recent findings of the pharmacologically potential bioactive compounds, their anti-tumor potential, and underlying mechanism of preventing cancer metastasis and angiogenesisin order to raise knowledge for fur-ther investigations to develop cancer therapeutics with no adverse side effects The mounting experimental evidences at pre-clinical and clinical levels from various research groups across the globe, regarding prevention of cancer metastasis by natural products unarguably make it a fast-track research area worth mass attention.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 868 ◽  
Author(s):  
Luigi Mandrich ◽  
Emilia Caputo

Cancer is the main cause of mortality and morbidity worldwide. Although a large variety of therapeutic approaches have been developed and translated into clinical protocols, the toxic side effects of cancer treatments negatively impact patients, allowing cancer to grow. Brassica metabolites are emerging as new weapons for anti-cancer therapeutics. The beneficial role of the consumption of brassica vegetables, the most-used vegetables in the Mediterranean diet, particularly broccoli, in the prevention of chronic diseases, including cardiovascular diseases, diabetes, and obesity, has been well-documented. In this review, we discuss the anti-tumor effects of the bioactive compounds from Brassica vegetables with regard to the compounds and types of cancer against which they show activity, providing current knowledge on the anti-cancer effects of Brassica metabolites against major types of tumors. In addition, we discuss the impacts of industrial and domestic processing on the compounds’ functional properties before their consumption as well as the main strategies used to increase the content of health-promoting metabolites in Brassica plants through biofortification. Finally, the impacts of microbiota on the compounds’ bioactivity are considered. This information will be helpful for the further development of efficacious anti-cancer drugs.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Ya-Hong Liu ◽  
Kui Li ◽  
Hong-Qi Tian

Acute renal injury has an incidence of 25%–30% in patients with tumors who are treated with cisplatin and in patients for whom no specific drugs are available for treatment. Amifostine is the only FDA-approved chemoprotective drug; however, its clinical application is limited because of side effects. The small-molecule antioxidant XH-003, an acute radiation syndrome- (ARS-) protective drug independently developed in our laboratory, with 100% intellectual property rights, overcomes the side effects of amifostine but retains its high efficacy. In this study, XH-003 showed a chemoprotective effect similar to that of amifostine. A mechanistic study showed that XH-003 could significantly reduce cisplatin-induced increases in serum creatinine and urea nitrogen, increase the activity of antioxidant enzymes (SOD, CAT, and GSH-Px), reduce oxidative stress and tissue inflammation, and alleviate renal tissue damage by blocking the activity of the mitochondrial apoptosis pathway. Most importantly, XH-003 could reduce the accumulation of cisplatin in renal tissue by regulating the expression of proteins involved in cisplatin uptake and excretion, such as organic cation transporter 2 and MRP2. Moreover, in an in vivo xenotransplantation model, XH-003 did not interfere with the antitumor effect of cisplatin. These data provide strong evidence that the ARS-protective agent has a great potential for protecting against chemotherapy-induced toxicity. Thus, XH-003 can be considered in antitumor therapy.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 729 ◽  
Author(s):  
Tso-Ting Lai ◽  
Chung-May Yang ◽  
Chang-Hao Yang

Diabetic retinopathy (DR) is a major microvascular complication that can lead to severe visual impairment in patients with diabetes. The elevated oxidative stress and increased reactive oxygen species (ROS) production induced by hyperglycemia have been reported to play an important role in the complex pathogenesis of DR. Astaxanthin (AST), a natural carotenoid derivative, has been recently recognized as a strong free radical scavenger and might, therefore, be beneficial in different diseases, including DR. In this study, we evaluated the potential role of AST as an antioxidative and antiapoptotic agent in protecting retinal cells and also investigated the involvement of the PI3K/Akt/Nrf2 pathway in AST-mediated effects. We treated high glucose-cultured mouse photoreceptor cells (661W) with different concentrations of AST and analyzed ROS production and cell apoptosis in the different regimens. Moreover, we also analyzed the expression of PI3K, Akt, Nrf2, and Phase II enzymes after AST treatment. Our results showed that AST dose-dependently reduced ROS production and attenuated 661W cell apoptosis in a high glucose environment. Importantly, its protective effect was abolished by treatment with PI3K or Nrf2 inhibitors, indicating the involvement of the PI3K/Akt/Nrf2 pathway. These results suggest AST as a nutritional supplement that could benefit patients with DR.


2013 ◽  
Vol 98 (4) ◽  
pp. 1333-1342 ◽  
Author(s):  
Maya B. Lodish

Context: The use of kinase inhibitors (KIs) in the treatment of cancer has become increasingly common, and practitioners must be familiar with endocrine-related side effects associated with these agents. This review provides an update to the clinician regarding the management of potential endocrinological effects of KIs. Evidence Acquisition: PubMed was employed to identify relevant manuscripts. A review of the literature was conducted, and data were summarized and incorporated. Evidence Synthesis: KIs, including small molecule KIs and monoclonal antibodies directed against kinases, have emerged over the past decade as an important class of anticancer agents. KIs specifically interfere with signaling pathways that are dysregulated in certain types of cancers and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. Currently, at least 20 KIs are approved as cancer therapeutics. However, KIs may affect a broad spectrum of targets and may have additional, unidentified mechanisms of action at the cellular level due to overlap between signaling pathways in the tumor cell and endocrine system. Recent reports in the literature have identified side effects associated with KIs, including alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, adrenal function, and glucose metabolism. Conclusions: Clinicians need to monitor the thyroid functions of patients on KIs. In addition, bone density and vitamin D status should be assessed. Special care should be taken to follow linear growth and development in children taking these agents. Clinicians should counsel patients appropriately on the potential adverse effects of KIs on fetal development.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4463 ◽  
Author(s):  
Wenju Liu ◽  
Shujuan Wang ◽  
Jinxing Zhou ◽  
Xunsheng Pang ◽  
Like Wang

Melatonin is well known as a powerful free radical scavenger and exhibits the ability to prevent cell apoptosis. In the present study, we investigated the role of melatonin and its receptor MTNR1B in regulating the function of bovine granulosa cells (GCs) and hypothesized the involvement of MTNR1B in mediating the effect of melatonin on GCs. Our results showed that MTNR1B knockdown significantly promoted GCs apoptosis but did not affect the cell cycle. These results were further verified by increasing the expression of pro-apoptosis genes (BAX and CASP3), decreasing expression of the anti-apoptosis genes (BCL2 and BCL-XL) and anti-oxidant genes (SOD1 and GPX4) without affecting cell cycle factors (CCND1, CCNE1 and CDKN1A) and TP53. In addition, MTNR1B knockdown did not disrupt the effects of melatonin in suppressing the GCs apoptosis or blocking the cell cycle. Moreover, MTNR1B knockdown did not affect the role of melatonin in increasing BCL2, BCL-XL, and CDKN1A expression, or decreasing BAX, CASP3, TP53, CCND1 and CCNE1 expression. The expression of MTNR1A was upregulated after MTNR1B knockdown, and melatonin promoted MTNR1A expression with or without MTNR1B knockdown. However, despite melatonin supplementation, the expression of SOD1 and GPX4 was still suppressed after MTNR1B knockdown. In conclusion, these findings indicate that melatonin and MTNR1B are involved in BCL2 family and CASP3-dependent apoptotic pathways in bovine GCs. MTNR1A and MTNR1B may coordinate the work of medicating the appropriate melatonin responses to GCs.


Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Abstract. Iodine is essential for thyroid hormone synthesis. Under normal iodine supply, calculated physiological iodine concentration in the thyroid is approx. 9 mM. Either potassium iodide (KI) or potassium iodate (KIO3) are used in iodine prophylaxis. KI is confirmed as absolutely safe. KIO3 possesses chemical properties suggesting its potential toxicity. Melatonin (N-acetyl-5-methoxytryptamine) is an effective antioxidant and free radical scavenger. Study aims: to evaluate potential protective effects of melatonin against oxidative damage to membrane lipids (lipid peroxidation, LPO) induced by KI or KIO3 in porcine thyroid. Homogenates of twenty four (24) thyroids were incubated in presence of either KI or KIO3 without/with melatonin (5 mM). As melatonin was not effective against KI-induced LPO, in the next step only KIO3 was used. Homogenates were incubated in presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25 mM) without/with melatonin or 17ß-estradiol. Five experiments were performed with different concentrations of melatonin (5.0; 2.5; 1.25; 1.0; 0.625 mM) and one with 17ß-estradiol (1.0 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased LPO with the strongest damaging effect (MDA + 4-HDA level: ≈1.28 nmol/mg protein, p < 0.05) revealed at concentrations of around 15 mM, thus corresponding to physiological iodine concentrations in the thyroid. Melatonin reduced LPO (MDA + 4-HDA levels: from ≈0.97 to ≈0,76 and from ≈0,64 to ≈0,49 nmol/mg protein, p < 0.05) induced by KIO3 at concentrations of 10 mM or 7.5 mM. Conclusion: Melatonin can reduce very strong oxidative damage to membrane lipids caused by KIO3 used in doses resulting in physiological iodine concentrations in the thyroid.


2019 ◽  
Vol 3 (2) ◽  
pp. 35
Author(s):  
Kartini Kartini ◽  
Azminah Azminah

In order to prepare standardized extract, optimization of extraction conditions of grape seed has been done. These conditions are type of menstrum (50, 70 and 96% of ethanolic solution), length of extraction (1, 2 and 4 hours) also method of evaporation (reduced pressure and opened air). Activity on free radical scavenger used as parameters to determine optimum conditions. Based on EC50 (concentration which scavenge 50% amount of free radical) can be concluded that optimum condition for extracting antioxidant active compound from grape seed are 70% ethanolic solution as menstrum, length of extraction 1 hour and evaporation on opened air use water bath.


Sign in / Sign up

Export Citation Format

Share Document