scholarly journals Bacterial Cellulose from Food to Biomedical Products

2020 ◽  
Vol 14 (1) ◽  
pp. 124-133
Author(s):  
Supajit Sraphet ◽  
Bagher Javadi

Cellulose production of aerobic bacteria with its very unique physiochemical properties attracted many researchers. The biosynthetic of Bacterial Cellulose (BC) was produced by low-cost media recently. BC has been used as biomaterials and food ingredient these days. Moreover, the capacity of BC composite gives the numerous application opportunities in other fields. Bacterial Cellulose (BC) development is differentiated from suspension planktonic culture by their Extracellular Polymeric Substances (EPS), down-regulation of growth rate and up-down the expression of genes. The attachment of microorganisms is highly dependent on their cell membrane structures and growth medium. This is a very complicated phenomenon that optimal conditions defined the specific architecture. This architecture is made of microbial cells and EPS. Cell growth and cell communication mechanisms effect biofilm development and detachment. Understandings of development and architecture mechanisms and control strategies have a great impact on the management of BC formation with beneficial microorganisms. This mini-review paper presents the overview of outstanding findings from isolating and characterizing the diversity of bacteria to BC's future application, from food to biosensor products. The review would help future researchers in the sustainable production of BC, applications advantages and opportunities in food industry, biomaterial and biomedicine.

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Jorge Lopez-Jimenez ◽  
Nicanor Quijano ◽  
Alain Vande Wouwer

Climate change and the efficient use of freshwater for irrigation pose a challenge for sustainable agriculture. Traditionally, the prediction of agricultural production is carried out through crop-growth models and historical records of the climatic variables. However, one of the main flaws of these models is that they do not consider the variability of the soil throughout the cultivation area. In addition, with the availability of new information sources (i.e., aerial or satellite images) and low-cost meteorological stations, it is convenient that the models incorporate prediction capabilities to enhance the representation of production scenarios. In this work, an agent-based model (ABM) that considers the soil heterogeneity and water exchanges is proposed. Soil heterogeneity is associated to the combination of individual behaviours of uniform portions of land (agents), while water fluxes are related to the topography. Each agent is characterized by an individual dynamic model, which describes the local crop growth. Moreover, this model considers positive and negative effects of water level, i.e., drought and waterlogging, on the biomass production. The development of the global ABM is oriented to the future use of control strategies and optimal irrigation policies. The model is built bottom-up starting with the definition of agents, and the Python environment Mesa is chosen for the implementation. The validation is carried out using three topographic scenarios in Colombia. Results of potential production cases are discussed, and some practical recommendations on the implementation are presented.


2021 ◽  
Vol 11 (6) ◽  
pp. 2809
Author(s):  
Dongmin Zhang ◽  
Qiang Song ◽  
Guanfeng Wang ◽  
Chonghao Liu

This article proposes a novel longitudinal vehicle speed estimator for snowy roads in extreme conditions (four-wheel slip) based on low-cost wheel speed encoders and a longitudinal acceleration sensor. The tire rotation factor, η, is introduced to reduce the deviation between the rotation tire radius and the manufacturer’s marked tire radius. The Local Vehicle Speed Estimator is defined to eliminate longitudinal vehicle speed estimation error. It improves the tire slip accuracy of four-wheel slip, even with a high slip rate. The final vehicle speed is estimated using two fuzzy control strategies that use vehicle speed estimates from speed encoders and a longitudinal acceleration sensor. Experimental and simulation results confirm the algorithm’s validity for estimating longitudinal vehicle speed for four-wheel slip in snowy road conditions.


2021 ◽  
pp. 131899
Author(s):  
Bingjie Zhang ◽  
Jingyang Yu ◽  
Changsheng Li ◽  
Jianli Wang ◽  
Jianhui Zhu ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4312 ◽  
Author(s):  
Yunzhu Chen ◽  
Xingwei Xue

With the rapid development of the world’s transportation infrastructure, many long-span bridges were constructed in recent years, especially in China. However, these bridges are easily subjected to various damages due to dynamic loads (such as wind-, earthquake-, and vehicle-induced vibration) or environmental factors (such as corrosion). Therefore, structural health monitoring (SHM) is vital to guarantee the safety of bridges in their service lives. With its wide frequency response range, fast response, simple preparation process, ease of processing, low cost, and other advantages, the piezoelectric transducer is commonly employed for the SHM of bridges. This paper summarizes the application of piezoelectric materials for the SHM of bridges, including the monitoring of the concrete strength, bolt looseness, steel corrosion, and grouting density. For each problem, the application of piezoelectric materials in different research methods is described. The related data processing methods for four types of bridge detection are briefly summarized, and the principles of each method in practical application are listed. Finally, issues to be studied when using piezoelectric materials for monitoring are discussed, and future application prospects and development directions are presented.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2259 ◽  
Author(s):  
Abhiram Mullapudi ◽  
Matthew Bartos ◽  
Brandon Wong ◽  
Branko Kerkez

“Smart” water systems are transforming the field of stormwater management by enabling real-time monitoring and control of previously static infrastructure. While the localized benefits of active control are well-established, the potential for system-scale control of watersheds is poorly understood. This study shows how a real-world smart stormwater system can be leveraged to shape streamflow within an urban watershed. Specifically, we coordinate releases from two internet-controlled stormwater basins to achieve desired control objectives downstream—such as maintaining the flow at a set-point, and generating interleaved waves. In the first part of the study, we describe the construction of the control network using a low-cost, open-source hardware stack and a cloud-based controller scheduling application. Next, we characterize the system’s control capabilities by determining the travel times, decay times, and magnitudes of various waves released from the upstream retention basins. With this characterization in hand, we use the system to generate two desired responses at a critical downstream junction. First, we generate a set-point hydrograph, in which flow is maintained at an approximately constant rate. Next, we generate a series of overlapping and interleaved waves using timed releases from both retention basins. We discuss how these control strategies can be used to stabilize flows, thereby mitigating streambed erosion and reducing contaminant loads into downstream waterbodies.


2020 ◽  
Author(s):  
Luciano A. E. Silva ◽  
Ivan Barroso ◽  
Alexsander Menezes ◽  
Alessandro R. L. Zachi ◽  
Milena F. Pinto ◽  
...  

Student access to laboratory experiments is critical in undergraduate engineering courses since it integrates theory and practice. The access of students to such practical examples helps them to understand and apply what is learned. However, due to rapid technological advancement, educational kits can quickly become obsolete. Besides, there are many known commercial platforms for training.Many of them have steep prices, which makes their availability dicult for every student. The present work proposes a low-cost ATMEGA-based system as the main device for an educational tool for training Control System Theory. The system enables the students to test dierent control strategies through the use of a simple educational kit.


2022 ◽  
Vol 8 (1) ◽  
pp. 50
Author(s):  
Yifan Li ◽  
Xiya Meng ◽  
Degang Guo ◽  
Jia Gao ◽  
Qiwei Huang ◽  
...  

Light is perceived by photoreceptors in fungi and further integrated into the stress-activated MAPK HOG pathway, and thereby potentially activates the expression of genes for stress responses. This indicates that the precise control of light conditions can likely improve the conidial yield and stress resistance to guarantee the low cost and long shelf life of Trichoderma-based biocontrol agents and biofertilizers. In this study, effects of wavelengths and intensities of light on conidial yield and stress tolerance to osmotic, oxidative and pH stresses in Trichoderma guizhouense were investigated. We found that 2 μmol photons/(m2 × s) of blue light increased the conidial yield more than 1000 folds as compared to dark condition and simultaneously enhanced conidial stress resistance. The enhanced conidial stress resistance is probably due to the upregulated stress-related genes in blue light, which is under the control of the blue light receptor BLR1 and the MAP kinase HOG1.


2021 ◽  
Author(s):  
Michel Passarini ◽  
João Moreira ◽  
Jose Alejandro Gomez ◽  
Rafaella Costa Bonugli-Santos

Abstract Microbial profile knowledge is essential to news alternatives and improvements in current treatments and destinations of landfill leachate that contains a variety of toxic compounds produced by municipal solid waste (MSW) disposal. Environmental DNA metabarcoding is an efficient, quick, and low-cost methodology for whole communities’ characterization. In this respect, the leachate from the Sanitary Landfill of Foz do Iguaçu City showed mixed characteristics from both acid and methanogenic phases, and 16S rDNA metabarcoding suggested the dominance of fermenting bacteria belonging to Firmicutes phylum, followed by Proteobacteria, Bacteroidetes and Synergistetes. The leachate acidogenic phase ended up being masked in the chemical and physical analyzes, however was evidenced in the metabarcoding methodology. On the other hand, no specifically methanogenic group was detected in significant abundance. To future application using culturomics approaches to bioremediation the leachate sample presented groups extensively studied, especially the Pseudomonas genus to heavy metals treatments, such as cadmium.


2021 ◽  
Author(s):  
Wenjing Jiang ◽  
Zhenlin Jiang ◽  
Xin Fan ◽  
Min Zhu

Abstract Bacterial cellulose (BC)decomposes easily and the carbon residue rate is low. These factors critically restrict its application in fabricating cellulosic carbon materials. Therefore, in this paper, a simple and facile method to improve the BC carbon yield is proposed based on the stretching orientation of BC. By controlling the degree of BC deformation, the orientation and crystallinity of the BC can be adjusted, thereby sensitively affecting the graphitization degree and carbon yield of carbonized BC. Samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering, and low-field nuclear magnetic resonance (LNMR). The results indicated that when the pre-stretched strain was 40%, the crystallinity and graphitization degree of BC improved, and the carbon yield increased significantly in comparison to that of untreated BC. Thus, a low-cost, facile, and environmentally friendly method of increasing the carbon yield of BC was developed in this study.


2011 ◽  
Vol 148-149 ◽  
pp. 97-100
Author(s):  
Xu Gang Wang ◽  
Guang Qi Cao ◽  
Zhi Guang Guan ◽  
Zu Yu Zhao

Wind power is an important direction of new energy, which has no pollution, no consuming fossil fuels, and no producing waste, which is widely used at this stage of clean energy. The small stand alone wind power has been paid more and more attention due to its low cost, flexible installation, strong adaptability. This paper introduces the mechanical and electrical structure, which are used in KW level stand alone mode wind turbine automatically track and yaw system. The motion rules and control strategies of the tracking and yaw system are discussed and then the control program flow is provided. The PIC16F873 chip is used as controller for this part in this system. It can fully meet the design requirements, which will reduce costs and increase the system's control ability. This system can automatically track and yaw, according to the wind direction and wind power.


Sign in / Sign up

Export Citation Format

Share Document