Borneol: A Plant Sourced Terpene with a Variety of Promising Pharmacological Effects

2021 ◽  
Vol 12 ◽  
Author(s):  
Amarjitsing Rajput ◽  
Aditi Kasar ◽  
Shruti Thorat ◽  
Madhur Kulkarni

Background: Borneol, a bicyclic monoterpene belonging to the class of camphene is sourced from Blumea balsamifera, Cinnamonum camphora (L.) Presl, Dryobalanops aromatica Gaertner, and the volatile oils extracted from various other plant sources. Chinese Traditional Medicine system documents almost 1000 years of clinical use of borneol as an adjuvant as well as an active in treating various diseases and disorders; mainly pertaining to the central nervous system. Objective: The review aims to provide the insights into the array of pharmacological activities elicited by borneol along with their underlying mechanisms. Methods: Apart from the promising permeation enhancing activity, the scientific database has established strong evidence of a variety of pharmacological effects for borneol. The current work involved critical evaluation of the published and patented literature revealing various pharmacodynamic activities of borneol alone and in combination with other actives. The mechanisms responsible for the same were also investigated. Results: A plethora of studies has revealed a promising antimicrobial, antiparasitic, and antimicrobial adhesion activity of borneol. Anti-inflammatory, analgesic, neuroprotective, and antiepileptic actions of borneol have been elucidated via a number of preclinical studies. Anti-diabetic, anti-hyperlipidemic, antihypertensive, and anticancer effects have also been explored for borneol. Conclusion: The array of pharmacological activities evaluated for borneol alone or in combination with other actives could be attributed to its specific molecular structure, excellent brain permeability, strong antioxidant property, and ability to modulate various inflammatory pathways and precursors. However, more extensive preclinical and mainly clinical studies are warranted before this bicyclic monoterpene can establish as an active pharmaceutical agent.

2020 ◽  
Vol 11 ◽  
Author(s):  
Feng Zhao ◽  
Ping Wang ◽  
Yuanyuan Jiao ◽  
Xiaoxiao Zhang ◽  
Daquan Chen ◽  
...  

Hydroxysafflower yellow A (HSYA), as a principal natural ingredient extracted from safflower (Carthamus tinctorius L.), has significant pharmacological activities, such as antioxidant, anti-inflammatory, anticoagulant, and anticancer effects. However, chemical instability and low bioavailability have been severely hampering the clinical applications of HSYA during the treatment of cardiovascular and cerebrovascular disease. Therefore, this present review systematically summarized the materials about HSYA, including acquisition methods, extraction and detection methods, pharmacokinetics, pharmacological effects and molecular mechanism, especially focus on the possible causes and resolutions about the chemical instability and low bioavailability of HSYA, in order to provide relatively comprehensive basic data for the related research of HSYA.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2020 ◽  
Vol 21 (9) ◽  
pp. 661-673 ◽  
Author(s):  
Mohammed Asadullah Jahangir ◽  
Chettupalli Anand ◽  
Abdul Muheem ◽  
Sadaf Jamal Gilani ◽  
Mohamad Taleuzzaman ◽  
...  

Herbal medicines are being used since ancient times and are an important part of the alternative and traditional medicinal system. In recent decades, scientists are embracing herbal medicines based on the fact that a number of drugs that are currently in use are derived directly or indirectly from plant sources. Moreover, herbal drugs have lesser side effects, albeit are potentially strong therapeutic agents. The herbal medicine market is estimated to be around US $62 billion globally. Herbal medicine has gained widespread acceptance due to its low toxicity, low cost, ease of accessibility and efficacy in treating difficult diseases. Safety and efficacy are another important factors in the commercialization process of herbal medicines. Nanotechnology has been shown to be potentially effective in improving the bioactivity and bioavailability of herbal medicines. Development of nano-phytomedicines (or by reducing the size of phytomedicine), attaching polymers with phytomedicines and modifying the surface properties of herbal drugs, have increased the solubility, permeability and eventually the bioavailability of herbal formulations. Novel formulations such as niosomes, liposomes, nanospheres, phytosomes etc., can be exploited in this area. This article reviews herbal medicines, which have prominent activity in the Central Nervous System (CNS) disorders and reported nano-phytomedicines based delivery systems.


2017 ◽  
Vol 6 (04) ◽  
pp. 5343
Author(s):  
Ragni Vora ◽  
Ambika N. Joshi* ◽  
Nitesh C. Joshi

Mucuna pruriens seeds are noted to be a natural source of L-DOPA and are also used as a substitute for the synthetic L-DOPA. In the present study; attempts are made to develop suitable method(s) for extraction of L-DOPA from the powdered seeds of Mucuna pruriens using different solvents and conditions. The Seed powder was subjected to 7 different extraction methods and Method 1 was subjected to various solvent concentrations. Some methods used de-fatting procedure, either the method was cold maceration or in high temperature. Soxhlet extraction was also used in one of the extraction methods. All the extracts were analyzed using RP-HPLC. Mobile Phase used was Water: Methanol: AcetoNitrile (100:60:40) (v/v) containing 0.2% Triethylamine, pH = 3.3 and monitored at 280 nm with variable wavelength UV detector. The extraction was best with Methanol Water mixture in a cold maceration technique and overall gives good extraction efficiency of 13.36 % L-DOPA and id the best method giving highest extraction efficiency. The De-fatting method was the 2nd best methods giving approximately 8.8% L-DOPA and Method 5 viz, heat reflux method gives 8.7% L-DOPA making it the 3rd best method. There are not many studies done for optimization of extraction technique for L-DOPA despite an extensive work is reported for isolation, identification and pharmacological activities of L-DOPA from various plant sources. Keeping this in view, present investigation was done to study the extraction efficiency of various extraction methods of L-DOPA content in seed extracts of Mucuna pruriens and compare it.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2545
Author(s):  
Ya-Hui Chen ◽  
Po-Hui Wang ◽  
Pei-Ni Chen ◽  
Shun-Fa Yang ◽  
Yi-Hsuan Hsiao

Cervical cancer is one of the major gynecologic malignancies worldwide. Treatment options include chemotherapy, surgical resection, radiotherapy, or a combination of these treatments; however, relapse and recurrence may occur, and the outcome may not be favorable. Metformin is an established, safe, well-tolerated drug used in the treatment of type 2 diabetes; it can be safely combined with other antidiabetic agents. Diabetes, possibly associated with an increased site-specific cancer risk, may relate to the progression or initiation of specific types of cancer. The potential effects of metformin in terms of cancer prevention and therapy have been widely studied, and a number of studies have indicated its potential role in cancer treatment. The most frequently proposed mechanism underlying the diabetes–cancer association is insulin resistance, which leads to secondary hyperinsulinemia; furthermore, insulin may exert mitogenic effects through the insulin-like growth factor 1 (IGF-1) receptor, and hyperglycemia may worsen carcinogenesis through the induction of oxidative stress. Evidence has suggested clinical benefits of metformin in the treatment of gynecologic cancers. Combining current anticancer drugs with metformin may increase their efficacy and diminish adverse drug reactions. Accumulating evidence is indicating that metformin exerts anticancer effects alone or in combination with other agents in cervical cancer in vitro and in vivo. Metformin might thus serve as an adjunct therapeutic agent for cervical cancer. Here, we reviewed the potential anticancer effects of metformin against cervical cancer and discussed possible underlying mechanisms.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Ghadha Ibrahim Fouad

Abstract Background The Coronavirus disease 2019 (COVID-19) outbreak has become a challenging global issue after its emergence in December 2019. Due to the high adaptation of the virus, COVID-19 demonstrated a high transmission and infectivity potentials. Several studies demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induce deleterious neurological manifestations through interacting with the central nervous system (CNS). Main body The neuroinvasive potential of SARS-CoV-2 might contribute to its fatal behavior. Understanding the underlying mechanisms of this novel neuropathogen might contribute to the development of effective therapeutic strategies. The manifestations of neural damage in COVID-19 patients ranged from headache to severe encephalopathy and progression of preexisting neural disorders, it is speculated that neuroinvasion is strongly linked to the fatal respiratory dysfunction. The underlying neuropathological impact of emerging pneumonia (COVID-19) is still unclear. Conclusion This review demonstrated the urgent need to understand the neuropathology of COVID-19, to manage the current borderless viral outbreak of SARS-CoV-2 and its comorbidities. Moreover, SARS-CoV-2 could be regarded as an opportunistic neuropathogen that affects several vital functions in the human body.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Maria C. Barbosa-Silva ◽  
Maiara N. Lima ◽  
Denise Battaglini ◽  
Chiara Robba ◽  
Paolo Pelosi ◽  
...  

AbstractInfectious diseases may affect brain function and cause encephalopathy even when the pathogen does not directly infect the central nervous system, known as infectious disease-associated encephalopathy. The systemic inflammatory process may result in neuroinflammation, with glial cell activation and increased levels of cytokines, reduced neurotrophic factors, blood–brain barrier dysfunction, neurotransmitter metabolism imbalances, and neurotoxicity, and behavioral and cognitive impairments often occur in the late course. Even though infectious disease-associated encephalopathies may cause devastating neurologic and cognitive deficits, the concept of infectious disease-associated encephalopathies is still under-investigated; knowledge of the underlying mechanisms, which may be distinct from those of encephalopathies of non-infectious cause, is still limited. In this review, we focus on the pathophysiology of encephalopathies associated with peripheral (sepsis, malaria, influenza, and COVID-19), emerging therapeutic strategies, and the role of neuroinflammation. Graphic abstract


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Gazanfar Rahmathulla ◽  
Steven A. Toms ◽  
Robert J. Weil

Metastasis to the central nervous system (CNS) remains a major cause of morbidity and mortality in patients with systemic cancers. Various crucial interactions between the brain environment and tumor cells take place during the development of the cancer at its new location. The rapid expansion in molecular biology and genetics has advanced our knowledge of the underlying mechanisms involved, from invasion to final colonization of new organ tissues. Understanding the various events occurring at each stage should enable targeted drug delivery and individualized treatments for patients, with better outcomes and fewer side effects. This paper summarizes the principal molecular and genetic mechanisms that underlie the development of brain metastasis (BrM).


2016 ◽  
pp. 165-169 ◽  
Author(s):  
J.-J. ZHANG ◽  
X.-D. LIU ◽  
L.-C. YU

Acute morphine exposure induces antinociceptive activity, but the underlying mechanisms in the central nervous system are unclear. Using whole-cell patch clamp recordings, we explore the role of morphine in the modulation of excitatory synaptic transmission in lateral amygdala neurons of rats. The results demonstrate that perfusion of 10 μM of morphine to the lateral amygdala inhibits the discharge frequency significantly. We further find that there are no significant influences of morphine on the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Interestingly, morphine shows no marked influence on the evoked excitatory postsynaptic currents (eEPSCs) in the lateral amygdala neurons. These results indicate that acute morphine treatment plays an important role in the modulation on the excitatory synaptic transmission in lateral amygdala neurons of rats.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3076 ◽  
Author(s):  
Bo Cao ◽  
Xi-Chuan Wei ◽  
Xiao-Rong Xu ◽  
Hai-Zhu Zhang ◽  
Chuan-Hong Luo ◽  
...  

For the treatment of diseases, especially chronic diseases, traditional natural drugs have more effective therapeutic advantages because of their multi-target and multi-channel characteristics. Among many traditional natural medicines, resins frankincense and myrrh have been proven to be effective in the treatment of inflammation and cancer. In the West, frankincense and myrrh have been used as incense in religious and cultural ceremonies since ancient times; in traditional Chinese and Ayurvedic medicine, they are used mainly for the treatment of chronic diseases. The main chemical constituents of frankincense and myrrh are terpenoids and essential oils. Their common pharmacological effects are anti-inflammatory and anticancer. More interestingly, in traditional Chinese medicine, frankincense and myrrh have been combined as drug pairs in the same prescription for thousands of years, and their combination has a better therapeutic effect on diseases than a single drug. After the combination of frankincense and myrrh forms a blend, a series of changes take place in their chemical composition, such as the increase or decrease of the main active ingredients, the disappearance of native chemical components, and the emergence of new chemical components. At the same time, the pharmacological effects of the combination seem magically powerful, such as synergistic anti-inflammation, synergistic anticancer, synergistic analgesic, synergistic antibacterial, synergistic blood-activation, and so on. In this review, we summarize the latest research on the main chemical constituents and pharmacological activities of these two natural resins, along with chemical and pharmacological studies on the combination of the two.


Sign in / Sign up

Export Citation Format

Share Document