Sirtuin3 in Neurological Disorders

2020 ◽  
Vol 12 ◽  
Author(s):  
Farhath Sherin ◽  
S. Gomathy ◽  
Shanish Antony

Abstract:: Sirtuins are NAD+ dependent enzymes that have a predominant role in neurodegenerative disorders and also regulate the inflammatory process, protein aggregation, etc. The relation between Sirtuins with that of the nervous system and neurodegeneration are widely studied consequently. Sirtuins have a strong role in metabolic syndrome in mitochondria also. The activities of Sirtuins can be altered by using small molecules that would be developed into drugs and it is proven that manipulation of SIRT1 activity influences neurodegenerative disease models. They are especially thrilling since using small molecules, which would be developed into a drug, it is feasible to alter the activities of sirtuins. Different functions of Sirtuins are depended upon their subcellular localization. In this review paper, we are discussing different Sirtuins, differential expression of sirtuins, and expression of sirtuin in the brain and briefly about sirtuin3 (SIRT3).

Author(s):  
Reema H. Alasfar ◽  
Rima J. Isaifan

AbstractThe concern about aluminum (Al) toxicity has been proven in various cases. Some cases are associated with the fact that Al is a neurotoxic substance that has been found in high levels in the brain tissues of Alzheimer’s disease (AD), epilepsy, and autism patients. Other cases are related to infants, especially premature infants and ones with renal failure, who are at the risk of developing the central nervous system (CNS) and bone toxicity. This risk is a result of infants’ exposure to Al from milk formulas, intravenous-feeding solutions, and possibly from aluminum-containing vaccinations. Furthermore, most antiperspirants contain  aluminum compounds that raise human exposure to toxic Al. This review paper is intended to discuss in detail the above concerns associated with aluminum, and hence urges the need for more studies exploring the effects of overexposure to Al and recommending mitigation actions.


2016 ◽  
Vol 311 (1) ◽  
pp. E32-E41 ◽  
Author(s):  
Cheng Han ◽  
Matthew W. Rice ◽  
Dongsheng Cai

Interdisciplinary studies in the research fields of endocrinology and immunology show that obesity-associated overnutrition leads to neuroinflammatory molecular changes, in particular in the hypothalamus, chronically causing various disorders known as elements of metabolic syndrome. In this process, neural or hypothalamic inflammation impairs the neuroendocrine and autonomic regulation of the brain over blood pressure and glucose homeostasis as well as insulin secretion, and elevated sympathetic activation has been appreciated as a critical mediator. This review describes the involved physiology and mechanisms, with a focus on glucose and blood pressure balance, and suggests that neuroinflammation employs the autonomic nervous system to mediate the development of diabetes and hypertension.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiuqi Chen ◽  
Wenmei Lu ◽  
Danhong Wu

As a type of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 2 (SIRT2) is predominantly found in the cytoplasm of cells in the central nervous system (CNS), suggesting its potential role in neurological disorders. Though SIRT2 is generally acknowledged to accelerate the development of neurological pathologies, it protects the brain from deterioration in certain circumstances. This review summarized the complex roles SIRT2 plays in the pathophysiology of diverse neurological disorders, compared and analyzed the discrete roles of SIRT2 in different conditions, and provided possible explanations for its paradoxical functions. In the future, the rapid growth in SIRT2 research may clarify its impacts on neurological disorders and develop therapeutic strategies targeting this protein.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 145
Author(s):  
Kentaro Matsuzaki ◽  
Yasushi Ohizumi

The number of patients with central nervous system disorders is increasing. Despite diligent laboratory and clinical research over the past 30 years, most pharmacologic options for the prevention and long-term treatment of central nervous system disorders and neurodegenerative disorders have been unsuccessful. Therefore, the development of drugs and/or functional foods to prevent the onset of neurodegenerative disorders is highly expected. Several reports have shown that polymethoxylated flavones (PMFs) derived from citrus fruit, such as nobiletin, tangeretin, and 3,3′,4′,5,6,7,8-heptamethoxyflavone, are promising molecules for the prevention of neurodegenerative and neurological disorders. In various animal models, PMFs have been shown to have a neuroprotective effect and improve cognitive dysfunction with regard to neurological disorders by exerting favorable effects against their pathological features, including oxidative stress, neuroinflammation, neurodegeneration, and synaptic dysfunction as well as its related mechanisms. In this review, we describe the profitable and ameliorating effects of citrus-derived PMFs on cognitive impairment and neural dysfunction in various rat and murine models or in several models of central nervous system disorders and identify their mechanisms of action.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Ana I. Duarte ◽  
Paula I. Moreira ◽  
Catarina R. Oliveira

Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD) considered as the “brain-type diabetes.” In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human “healthy” longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.


2022 ◽  
Vol 5 (1) ◽  
pp. 178-189
Author(s):  
Liliyanti Fauzi ◽  
Tiara Bunga

The eye is a complex sensory organ that is responsible for vision. Within the protective sheath, each eye has receptors, a lens system for focusing light on receptors, and a nervous system for transmitting impulses from the receptors to the brain. Visual dysfunction can be caused by abnormal eye movements or changes in visual acuity, refraction, color vision, or accommodation. Visual dysfunction may also be a secondary effect of other neurological disorders. This narrative review aims to describe the structure of the eye in general and visual disturbances caused by the aging process and disorders of the protective structure of the eye.


2021 ◽  
Vol 12 ◽  
Author(s):  
Satyakam Bhagavati

Remarkable discoveries over the last two decades have elucidated the autoimmune basis of several, previously poorly understood, neurological disorders. Autoimmune disorders of the nervous system may affect any part of the nervous system, including the brain and spinal cord (central nervous system, CNS) and also the peripheral nerves, neuromuscular junction and skeletal muscle (peripheral nervous system, PNS). This comprehensive overview of this rapidly evolving field presents the factors which may trigger breakdown of self-tolerance and development of autoimmune disease in some individuals. Then the pathophysiological basis and clinical features of autoimmune diseases of the nervous system are outlined, with an emphasis on the features which are important to recognize for accurate clinical diagnosis. Finally the latest therapies for autoimmune CNS and PNS disorders and their mechanisms of action and the most promising research avenues for targeted immunotherapy are discussed.


2021 ◽  
Vol 22 (13) ◽  
pp. 6773
Author(s):  
Yuze Wu ◽  
Guojun Wei ◽  
Ningning Zhao

As a newly identified manganese transport protein, ZIP14 is highly expressed in the small intestine and liver, which are the two principal organs involved in regulating systemic manganese homeostasis. Loss of ZIP14 function leads to manganese overload in both humans and mice. Excess manganese in the body primarily affects the central nervous system, resulting in irreversible neurological disorders. Therefore, to prevent the onset of brain manganese accumulation becomes critical. In this study, we used Zip14−/− mice as a model for ZIP14 deficiency and discovered that these mice were born without manganese loading in the brain, but started to hyper-accumulate manganese within 3 weeks after birth. We demonstrated that decreasing manganese intake in Zip14−/− mice was effective in preventing manganese overload that typically occurs in these animals. Our results provide important insight into future studies that are targeted to reduce the onset of manganese accumulation associated with ZIP14 dysfunction in humans.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Massimo Masserini

The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier (BBB) regulating its homeostasis. BBB is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the BBB also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the BBB. Within this review, the recently born strategy of brain drug delivery based on the use of nanoparticles, multifunctional drug delivery systems with size in the order of one-billionth of meters, is described. The review also includes a brief description of the structural and physiological features of the barrier and of the most utilized nanoparticles for medical use. Finally, the potential neurotoxicity of nanoparticles is discussed, and future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments.


Author(s):  
Maria Flynn ◽  
Dave Mercer

The nervous system’s central role in all human functions means that neurological disorders often directly impact on other body systems, so the management of neurological conditions is a complex and specialized area of nursing practice. People with neurological disorders will normally be cared for by specialist clinical teams working in neurological or neurosurgical units or spinal centres. However, general adult nurses will come into contact with people who have a collection of symptoms suggesting a neurological disorder, and they are highly likely to encounter people who are living with dementia. It is therefore important that general adult nurses can recognize neurological changes and communicate effectively with people who have disorders of the brain or nervous system. This chapter outlines key facts about neurological conditions which are likely to be useful to the general nurse. These include an overview of conditions, clinical examinations, and key nursing considerations. A summary of frequently prescribed medicines is also presented.


Sign in / Sign up

Export Citation Format

Share Document