Role of Lanc like G protein-coupled receptor-2with BOP and BTB/POZ in Stress Tolerance and High Yielding trait of Pigeonpea

2019 ◽  
Vol 6 (03) ◽  
Author(s):  
JESHIMA KHAN YASIN ◽  
SAKSHI CHAUDHARY ◽  
BHAIRAV NATH PRASAD ◽  
ARUMUGAM PILLAI ◽  
NIDHI VERMA ◽  
...  

Pigeonpea is drought resilient crop; relatively more drought tolerant than other legume crops. Through detailed evaluation and multi-location trials of cross derivatives, we identified 65 better performing pigeonpea lines. Among these lines, high yielding and stress-tolerant accessions were identified. From our earlier MYB network and flowering genes networks, we could identify tightly linked co-expressinggenes for yield traits. Semi-quantitative expression analyses showed that the defending type drought stress tolerance contributing LAN C like protein GCL-2 is expressed in providing disease resistance and myb linked BTB/POZ genes contribute for high yielding of pigeonpea. BOP is a member of BTB group of plant protein. We found differential up-regulation of these genes in drought-tolerant high yielding pigeonpea lines earlier reported by our team. Whereas in another report we explained the myb linked expression of BTB/POZ genes. These genes selected from our earlier network analyses were identified, PCR amplified, sequenced and structure validated for its functional domain. Using the gene sequence, we predicted and validated the protein structure of Lan C. The current study extends our earlier findings that these genes are directly taking part in stress tolerance and high yielding traits.

PROTOPLASMA ◽  
2019 ◽  
Vol 256 (5) ◽  
pp. 1333-1344 ◽  
Author(s):  
Rania Ben Saad ◽  
Hela Safi ◽  
Anis Ben Hsouna ◽  
Faical Brini ◽  
Walid Ben Romdhane

2018 ◽  
Vol 19 (11) ◽  
pp. 1114-1123 ◽  
Author(s):  
Anjali Khajuria ◽  
Nandni Sharma ◽  
Renu Bhardwaj ◽  
Puja Ohri

2020 ◽  
Vol 15 ◽  
Author(s):  
Na Wang ◽  
Yukun Li ◽  
Sijing Liu ◽  
Liu Gao ◽  
Chang Liu ◽  
...  

Background: Recent studies revealed that the hypoglycemic hormone, glucagon-like peptide-1 (GLP-1), acted as an important modulator in osteogenesis of bone marrow derived mesenchymal stem cells (BMSCs). Objectives: The aim of this study was to identify the specific microRNA (miRNA) using bioinformatics analysis and validate the presence of differentially expressed microRNAs with their target genes after GLP-1 receptor agonist (GLP-1RA) administration involved in ostogenesis of BMSCs. Methods: MiRNAs were extracted from BMSCs after 5 days’ treatment and sent for high-throughput sequencing for differentially expressed (DE) miRNAs analyses. Then the expression of the DE miRNAs verified by the real-time RT-PCR analyses. Target genes were predicted, and highly enriched GOs and KEGG pathway analysis were conducted using bioinformatics analysis. For the functional study, two of the target genes, SRY (sex determining region Y)-box 5 (SOX5) and G protein-coupled receptor 84 (GPR84), were identified. Results: A total of 5 miRNAs (miRNA-509-5p, miRNA-547-3p, miRNA-201-3p, miRNA-201-5p, and miRNA-novel-272-mature) were identified differentially expressed among groups. The expression of miRNA-novel-272-mature were decreased during the osteogenic differentiation of BMSCs, and GLP-1RA further decreased its expression. MiRNA-novel-272-mature might interact with its target mRNAs to enhance osteogenesis. The lower expression of miRNA-novel-272-mature led to an increase in SOX5 and a decrease in GPR84 mRNA expression, respectively. Conclusions: Taken together, these results provide further insights to the pharmacological properties of GLP-1RA and expand our knowledge on the role of miRNAs-mRNAs regulation network in BMSCs’ differentiation.


2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Yi Zheng ◽  
Meimei Wu ◽  
Ting Gao ◽  
Li Meng ◽  
Xiaowei Ding ◽  
...  

Ample evidence suggests that estrogens have strong influences on the occurrence of stress-related mood disorders, but the underlying mechanisms remain poorly understood. Through multiple approaches, we demonstrate that the G protein-coupled estrogen receptor (GPER) is widely distributed along the HPA axis and in brain structures critically involved in mood control. Genetic ablation of GPER in the rat resulted in significantly lower basal serum corticosterone level but enhanced ACTH release in response to acute restraint stress, especially in the female. GPER-/- rats of either sex displayed increased anxiety-like behaviors and deficits in learning and memory. Additionally, GPER deficiency led to aggravation of anxiety-like behaviors following single-prolonged stress (SPS). SPS caused significant decreases in serum corticosterone in WT but not in GPER-deficient rats. The results highlight an important role of GPER at multiple sites in regulation of the HPA axis and mood.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-323363
Author(s):  
Ester Pagano ◽  
Joshua E Elias ◽  
Georg Schneditz ◽  
Svetlana Saveljeva ◽  
Lorraine M Holland ◽  
...  

ObjectivePrimary sclerosing cholangitis (PSC) is in 70% of cases associated with inflammatory bowel disease. The hypermorphic T108M variant of the orphan G protein-coupled receptor GPR35 increases risk for PSC and ulcerative colitis (UC), conditions strongly predisposing for inflammation-associated liver and colon cancer. Lack of GPR35 reduces tumour numbers in mouse models of spontaneous and colitis associated cancer. The tumour microenvironment substantially determines tumour growth, and tumour-associated macrophages are crucial for neovascularisation. We aim to understand the role of the GPR35 pathway in the tumour microenvironment of spontaneous and colitis-associated colon cancers.DesignMice lacking GPR35 on their macrophages underwent models of spontaneous colon cancer or colitis-associated cancer. The role of tumour-associated macrophages was then assessed in biochemical and functional assays.ResultsHere, we show that GPR35 on macrophages is a potent amplifier of tumour growth by stimulating neoangiogenesis and tumour tissue remodelling. Deletion of Gpr35 in macrophages profoundly reduces tumour growth in inflammation-associated and spontaneous tumour models caused by mutant tumour suppressor adenomatous polyposis coli. Neoangiogenesis and matrix metalloproteinase activity is promoted by GPR35 via Na/K-ATPase-dependent ion pumping and Src activation, and is selectively inhibited by a GPR35-specific pepducin. Supernatants from human inducible-pluripotent-stem-cell derived macrophages carrying the UC and PSC risk variant stimulate tube formation by enhancing the release of angiogenic factors.ConclusionsActivation of the GPR35 pathway promotes tumour growth via two separate routes, by directly augmenting proliferation in epithelial cells that express the receptor, and by coordinating macrophages’ ability to create a tumour-permissive environment.


2021 ◽  
Vol 22 (6) ◽  
pp. 2906
Author(s):  
Urszula Talar ◽  
Agnieszka Kiełbowicz-Matuk

B-box proteins represent diverse zinc finger transcription factors and regulators forming large families in various plants. A unique domain structure defines them—besides the highly conserved B-box domains, some B-box (BBX) proteins also possess CCT domain and VP motif. Based on the presence of these specific domains, they are mostly classified into five structural groups. The particular members widely differ in structure and fulfill distinct functions in regulating plant growth and development, including seedling photomorphogenesis, the anthocyanins biosynthesis, photoperiodic regulation of flowering, and hormonal pathways. Several BBX proteins are additionally involved in biotic and abiotic stress response. Overexpression of some BBX genes stimulates various stress-related genes and enhanced tolerance to different stresses. Moreover, there is evidence of interplay between B-box and the circadian clock mechanism. This review highlights the role of BBX proteins as a part of a broad regulatory network in crop plants, considering their participation in development, physiology, defense, and environmental constraints. A description is also provided of how various BBX regulators involved in stress tolerance were applied in genetic engineering to obtain stress tolerance in transgenic crops.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Antti Sajanti ◽  
Seán B. Lyne ◽  
Romuald Girard ◽  
Janek Frantzén ◽  
Tomi Rantamäki ◽  
...  

Abstract P75 neurotrophic receptor (p75NTR) is an important receptor for the role of neurotrophins in modulating brain plasticity and apoptosis. The current understanding of the role of p75NTR in cellular adaptation following pathological insults remains blurred, which makes p75NTR’s related signaling networks an interesting and challenging initial point of investigation. We identified p75NTR and related genes through extensive data mining of a PubMed literature search including published works related to p75NTR from the past 20 years. Bioinformatic network and pathway analyses of identified genes (n = 235) were performed using ReactomeFIViz in Cytoscape based on the highly reliable Reactome functional interaction network algorithm. This approach merges interactions extracted from human curated pathways with predicted interactions from machine learning. Genome-wide pathway analysis showed total of 16 enriched hierarchical clusters. A total of 278 enriched single pathways were also identified (p < 0.05, false discovery rate corrected). Gene network analyses showed multiple known and new targets in the p75NTR gene network. This study provides a comprehensive analysis and investigation into the current knowledge of p75NTR signaling networks and pathways. These results also identify several genes and their respective protein products as involved in the p75NTR network, which have not previously been clearly studied in this pathway. These results can be used to generate novel hypotheses to gain a greater understanding of p75NTR in acute brain injuries, neurodegenerative diseases and general response to cellular damage.


Sign in / Sign up

Export Citation Format

Share Document