scholarly journals Produksi Organic Preservative dan Solid Biofuel dari Hydrothermal Treatment Tongkol Jagung dengan Variasi Temperatur

2016 ◽  
Vol 10 (2) ◽  
pp. 55
Author(s):  
Haidar Ali ◽  
Ahmad Tawfiequrrahman Yuliansyah

Corn is one of staple food and influential commodity driving Indonesia’s economy. Indonesia currently produces as high as 19 million tons of corn which contains 50% of biomass in the form of cob. Waste from harvesting and consumption of corn, namely, corn cob (CC) is left as waste. This CC is actually a sustainable, easily accessible, and renewable biomass energy source as an alternative to Indonesia’s depleting fossil fuel reserves. Hydrothermal treatment is a conversion method that has some consequential advantages compared to other methods; e.g. the ability to treat high-moisture biomass like CC and the possibility to use lower temperature. This research aims to produce and characterize liquid and solid fuel subsequent to hydrothermal treatment of CC obtained from Sleman, Yogyakarta. After size reduction, fine particles were mixed with water to form slurry. Slurry was heated in an autoclave for hydrothermal treatment at initial pressure of 2.0 MPa and was held for 200°C, 240°C, and 270°C in 30 minutes. The solid and liquid products were then separated. Liquid was analyzed using GC-MS and solid by using AAS. The result showed that, in comparison to raw material, solid product had higher carbon content which resulted in the increase of calorific value of the solid biofuel. The calorific value of solid product ranged from 19,59 -22,02 MJ/kg or 20,93-35,87% higher than raw materials and 4-17% higher than average coal used in Indonesia. Major component in liquid product are N, N-dimethyl formamide, furfural, and phenolic compound, with benzoic acid present as minor component. The potential of liquid products as organic preservatives are examined by testing the tenacity of wood against termite according to ASTM D3345-74 standard method. Result showed that liquid product were effective in exhibiting termiticidal activity and temperature 200°C showed the optimum condition. Keywords: corn cob, hydrothermal treatment, organic preservatives, solid biofuel Jagung merupakan salah satu makanan pokok dan komoditas yang berpengaruh terhadap ekonomi Indonesia. Produksi jagung Indonesia saat ini mencapai 19 juta ton dan sebanyak 50% berupa tongkol. Limbah dari pemanenan dan konsumsi jagung adalah tongkol jagung (CC) yang cepat busuk dan banyak kelemahannya yang harus ditangani. Sebetulnya, CC merupakan solusi yang berkelanjutan, mudah diperoleh, serta sumber energi terbarukan berupa biomassa yang dapat menjadi alternatif solusi untuk berkurangnya cadangan bahan bakar fosil di Indonesia. Hydrothermal treatment adalah metode konversi yang memiliki beberapa keunggulan jika dibandingkan dengan metode lain seperti kemampuan untuk menangani kandungan air yang tinggi pada CC dan kemungkinan penggunaan temperatur yang rendah. Penelitian ini bertujuan untuk mengkarakterisasi cairan dan padatan yang dihasilkan dari proses hydrothermal terhadap tongkol jagung yang diperoleh dari Sleman, Yogyakarta. Setelah proses reduksi ukuran, partikel halus tersebut dicampur dengan air sehingga terbentuk slurry. Slurry dipanaskan dalam autoclave untuk dijalankan proses hydrothermal dengan tekanan awal sebesar 2.0 MPa dan dijalankan pada suhu 200°C, 240°C, dan 270°C dengan holding time selama 30 menit. Padatan dan cairan yang dihasilkan dipisahkan. Cairan dianalisis dengan GC-MS sedangkan padatan dengan AAS. Hasil menunjukkan bahwa dengan perbandingan bahan baku, padatan memiliki kandungan karbon yang lebih tinggi sehingga terjadi kenaikan nilai kalor. Nilai kalor padatan berkisar antara 19,59-22,02 MJ/kg atau 20,93-35,87% lebih tinggi dari bahan baku dan 4-17% dari batubara yang ada saat ini. Cairan yang dihasilkan didominasi oleh N,N-dimethyl formamide, furfural, phenolic compound serta sedikit asam berupa benzoic acid. Pengujian produk cairan sebagai pengawet organik dilakukan dengan pengujian ketahanan kayu terhadap rayap sesuai dengan standar ASTM D3345-74. Hasil menunjukkan bahwa cairan yang dihasilkan cukup efektif sebagai pembunuh rayap dan variasi temperatur 200°C memberikan kondisi yang optimum. Kata kunci: tongkol jagung, proses hidrotermal, pengawet organik, bahan bakar padat

2019 ◽  
Vol 16 (2) ◽  
Author(s):  
Diego Andrés Reyes Rodriguez ◽  
Omar Yesid Reyes Trejos ◽  
Gabriel de Jesús Camargo Vargas

In this manuscript, the effect of various mixture proportions of a lignocellulosic material (palm shell) and waste tyres (a material not easily degraded in natural environmental conditions) subjected to a thermochemical process known as pyrolysis, on the distribution of the different fractions of the reaction products, was analyzed. The mixtures consisted of 20%-80%, 50%-50% and 80%-20% of palm shell and used tyre respectively, which were subjected to a co-pyrolysis, a simultaneous thermochemical decomposition of two biomass sources, and the resulting liquid and solid fractions were characterized. The experiments were carried out using a 0.5 mm-particle size under 500 °C for each pyrolysis run. The raw materials are characterized by proximate and elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR) in addition to Thermogravimetric Analysis (TGA). Solid and liquid products were also characterized by FTIR, and their calorific value was also determined. The distribution of fractions was made by weight difference between the fractions and the mass fed. The pyrolysis run that obtained the best properties was the mixture of 80% waste tyres and 20% palm shells with a calorific value of 21,117 kJ/kg, obtaining three types of products with the following mass proportions: solid 23.5%, liquid 18.6% and gas 57.9%. It can be concluded that the solid product obtained has a great energy potential, superior than that of dry wood, which is 19,000 kJ/kg.


EKUILIBIUM ◽  
2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Bregas Siswo Tatag Sembodo

<p>Abstract: The use of corn cobs as the biomass feedstock offers promising possibilities for<br />renewable energy production. Corn cobs can be converted into oil by thermochemical<br />liquefaction in the supercritical ethanol. The aims of this research were to find the optimal<br />temperature which produce the maximum yield of oil and the contained substances in the oil. In<br />this research, 5 gram dry corn cob powder was put into 81 ml autoclave in addition of 0.25 gr<br />sodium carbonate and 75 ml ethanol as solvent. After nitrogen was blown into autoclave, it was<br />heated in the tube furnace until it reaches 75 minutes and maintained with the various<br />temperature.The liquid product was distilled to separate oil and volatile matter, meanwhile the<br />solid product was dried for 24 hours. The solid product was extracted with n-hexane to remove<br />glucose. The composititions of oil was analyzed by using GC-MS. The experimental result<br />showed that the maximum yield was 47.10 % when heating time 75 minute. The oil mostly<br />contained esters from C-20 to lower. The main compound was hexadecanoic acid ethyl ester by<br />37.10 % weight and other consist of alkyl esters, phenols, alkanes, etc.<br />Keywords: biomass, corn cobs, thermochemical liquefaction</p>


2019 ◽  
Vol 5 (12) ◽  
pp. 37-46
Author(s):  
K. Chalov ◽  
Yu. Lugovoy ◽  
Yu. Kosivtsov ◽  
E. Sulman

This paper presents a study of the process of thermal degradation of crosslinked polyethylene. The kinetics of polymer decomposition was studied by thermogravimetry. Crosslinked polyethylene showed high heat resistance to temperatures of 400 °C. The temperature range of 430–500 °C was determined for the loss of the bulk of the sample. According to thermogravimetric data, the decomposition process proceeds in a single stage and includes a large number of fracture, cyclization, dehydrogenation, and other reactions. The process of pyrolysis of a crosslinked polymer in a stationary-bed metal reactor was investigated. The influence of the process temperature on the yield of solid, liquid, and gaseous pyrolysis products was investigated. The optimum process temperature was 500 °C. At this temperature, the yield of liquid and gaseous products was 85.0 and 12.5% (mass.), Respectively. Samples of crosslinked polyester decomposed almost completely. The amount of carbon–containing residue was 3.5% by weight of the feedstock. With increasing temperature, the yield of liquid products decreased slightly and the yield of gaseous products increased, but their total yield did not increase. For gaseous products, a qualitative and quantitative composition was determined. The main components of the pyrolysis gas were hydrocarbons C1–C4. The calorific value of pyrolysis gas obtained at a temperature of 500 °C was 17 MJ/m3. Thus, the pyrolysis process can be used to process crosslinked polyethylene wastes to produce liquid hydrocarbons and combustible gases.


2014 ◽  
Vol 252 ◽  
pp. 230-238 ◽  
Author(s):  
Guangyi Zhang ◽  
Dachao Ma ◽  
Cuina Peng ◽  
Xiaoxing Liu ◽  
Guangwen Xu

2021 ◽  
Vol 21 (3) ◽  
pp. 651
Author(s):  
Agus Kuncaka ◽  
Rizky Ibnufaatih Arvianto ◽  
Almas Shafira Ramadhanty Bunga Latifa ◽  
Munawir Ramadhan Rambe ◽  
Adhitasari Suratman ◽  
...  

Conversion of feather and blood from chicken slaughterhouse waste for producing solid and liquid organic fertilizer excluding composting process with a variation of the mass ratio of feather and blood of a chicken has been conducted. The nitrogen, sulfur, and iron content in the solid and liquid product of the hydrothermal carbonization process were analyzed to identify and characterize the possibility of hydrolysate as a source of nitrogen, sulfur, and iron in soil fertilizer. Feather and blood of chicken waste were introduced to a hydrothermal carbonization reactor with the addition of limestone at a temperature range of 160–170 °C for the preparation of solid and liquid organic fertilizer. According to the FTIR interpretation, the solid product had functional groups such as NH, OH, CH sp3, SH, C=O, C=C, C–O–C, and C–H aromatic. The nitrogen, sulfur, and iron content of the optimal ratio in the solid phase were 4.67%, 1.63%, and 3694.56 ppm, while their contents in the liquid fertilizer were 3.76%, 1.80%, and 221.56 ppm, respectively. The vibration of 478 cm–1 is attributed to Fe–O paramagnetic (Fe2O3) confirmed by TEM images showed the diameter size less than 20 nm indicating the presence of superparamagnetic material.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1362
Author(s):  
Boris N. Kuznetsov ◽  
Sergey V. Baryshnikov ◽  
Angelina V. Miroshnikova ◽  
Aleksandr S. Kazachenko ◽  
Yuriy N. Malyar ◽  
...  

For the first time, the fractionation of birch wood into microcrystalline cellulose, xylose and methoxyphenols is suggested based on the integration of alkali-acid pretreatments and hydrogenation in ethanol over a bifunctional Ru/C catalyst. It is established that removal of hemicelluloses during pretreatments of birch wood influences the yields of the liquid, gaseous and solid products of the non-catalytic and catalytic hydrogenation of pretreated samples in ethanol at 225 °C. The bifunctional Ru/carbon catalyst affects in different ways the conversion and yields of products of hydrogenation of the initial and acid- and alkali-pretreated birch wood. The most noticeable influence is characteristic of the hydrogenation of the acid-pretreated wood, where in contrast to the non-catalytic hydrogenation, the wood conversion and the yields of liquid products increase but the yields of the solid and gaseous products decrease. GC-MS, gel permeation chromatography and elemental analysis were used for characterization of the liquid product composition. The molecular mass distribution of the liquid products of hydrogenation of the initial and pretreated wood shifts towards the low-molecular range in the presence of the catalyst. From the GC-MS data, the contents of monomer compounds, predominantly 4-propylsyringol and 4-propanolsyringol, increase in the presence of the ruthenium catalyst. The solid products of catalytic hydrogenation of the pretreated wood contain up to 95 wt% of cellulose with the structure, similar to that of microcrystalline cellulose.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 7058-7073
Author(s):  
Aurel Lunguleasa ◽  
Cosmin Spirchez ◽  
Sorin Radulescu

Making pellets from corn cobs, the goal of this work, was motivated by the abundance of vegetable biomass. Corn is used in both animal and human food. Four pelletizing presses with flat die and different capacities were considered. The influence of the capacity of the pellet mills on the density of the obtained pellets was established by increasing the capacities of the pellet mills to increase the density of the pellets. The waste of crushed corn cobs was used for pelletizing. The energy characteristics of the pellets from corn cobs were determined, with a high calorific value of 20.0 MJ·kg-1 and a calorific density of 19.8 MJ·m-3; these values were much higher than the wood species used currently in combustion. The black and calcined ash contents of 24.7% and 2.3%, respectively, were also obtained. Based on the main properties of experimental pellets, corn cob waste can be regarded as suitable for transformation into pellets with good characteristics. The positive influence of capacity press increase on density of pellets was also highlighted.


2019 ◽  
Vol 19 (3) ◽  
pp. 703 ◽  
Author(s):  
Siti Jamilatun ◽  
Budhijanto Budhijanto ◽  
Rochmadi Rochmadi ◽  
Avido Yuliestyan ◽  
Arief Budiman

With a motto of preserving nature, the use of renewable resources for the fulfillment of human needs has been seen echoing these days. In response, microalgae, a water-living microorganism, is perceived as an interesting alternative due to its easy-to-cultivate nature. One of the microalgae, which possess the potential for being the future source of energy, food, and health, is Spirulina plantesis. Aiming to identify valuable chemicals possibly derived from it, catalytic and non-catalytic pyrolysis process of the residue of S. plantesis microalgae has been firstly carried out in a fixed-bed reactor over the various temperature of 300, 400, 500, 550 and 600 °C. The resulting vapor was condensed so that the liquid product consisting of the top product (oil phase) and the bottom product (water phase) can be separated. The composition of each product was then analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). In the oil phase yield, the increase of aliphatic and polyaromatic hydrocarbons (PAHs) and the decrease of the oxygenated have been observed along with the increase of pyrolysis temperature, which might be useful for fuel application. Interestingly, their water phase composition also presents some potential chemicals, able to be used as antioxidants, vitamins and food additives.


1970 ◽  
Vol 33 (2) ◽  
pp. 64-73 ◽  
Author(s):  
Richard H. Forsythe

Egg products, the bulk of which are produced in less than 100 plants operating under continuous USDA inspection, are described. Each year in the U. S. approximately $130–$135 million of frozen egg and $53–$55 million of dried egg products are produced. Presently 60% of the egg products are consumed as frozen and/or liquid products. These total about 10% of all the eggs consumed (the rest being used as “shell or table” eggs). The trend toward increased use of egg solids is partially attributable to the ability to complete analysis before incorporating into large batches, which is not possible with defrosted frozen or liquid egg. Specifications and properties of egg products, particularly those of sanitary significance, used to describe purchases for the bakery, confectioners, dry mix and dressing manufacturers, are discussed. Recent progress in processing technology is reviewed. New egg washing concepts utilizing abrasive brushes, acid cleaners, and iodine containing sanitizers have improved the sanitary quality of raw materials being presented for breaking, Advances in mechanical egg breaking permit more rapid handling of liquid product, resulting in significantly reduced bacteria levels. Glucose removed at low temperatures has resulted in lowered bacteria levels in products to be pasteurized. Advances in pasteurization include consideration of equipment and its use, as well as chemical techniques developed to extend the effectiveness of thermal pasteurization. Drying, one of the most time-honored techniques for food preservation, has brought with it the problem of re-contamination from large volumes of air required. Final dry product in-package pasteurization is now possible with dry egg whites and may be extended to other egg products with fumigants or irradiation. The egg industry, through the leadership of its trade organization, Institute of American Poultry Industries, has long recognized the need for “self-certification” and initiated sanitary progress and pasteurization even before the so-called “salmonellae problem” was identified by the Communicable Disease Center Salmonella Surveillance Unit. Recent actions of the regulatory agencies, such as the FDA GMPs, the Public Health Service's proposed ordinance and code regulating the processing of egg and egg products, and Senate File 2116 introduced May 12, 1969 to provide for mandatory inspection of egg products are outlined. The E-3-A program, less than one year old, has gained the support of regulatory agencies, equipment manufacturers, and the egg products industry.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1516 ◽  
Author(s):  
Algirdas Jasinskas ◽  
Dionizas Streikus ◽  
Egidijus Šarauskis ◽  
Mečys Palšauskas ◽  
Kęstutis Venslauskas

This paper presents the results of research on the preparation and use for energy purposes of three reed herbaceous energy plants: reed (Phragmites australis) and bulrush (Typha); both grown in local vicinities on lakes and riverbanks and reed canary grass (Phalaris arundinacea L.). The physical-mechanical characteristics (density, moisture, and ash content) of chopped and milled reeds were investigated. The investigation of mill fractional compositions determined the largest amount of mill—reed mill, collected on the sieves of 0.63 mm (40.0%). The pellet moisture ranged from 10.79% to 6.32%, while the density was 1178.9 kg m−3 for dry matter (DM) of reed. The ash content of reed, bulrush and reed canary grass pellets was 3.17%, 5.88%, and 7.99%, respectively. The ash melting temperature ranged from 865 to 1411 °C; these temperatures were high enough for ash melting. The determined pellet calorific value varied from 17.4 to 17.9 MJ kg−1 DM. The disintegration force, indicating pellet strength, ranged from 324.25 N for reed canary grass to 549.24 N for reed. The determined emissions of harmful pollutants—CO2, CO, NOx, and unburnt hydrocarbons (CxHy)—did not exceed the maximum permissible levels. The assessment of greenhouse gas emissions (GHG) from technology showed that the CO2 equivalents ranged from 7.3 to 10.1 kg CO2-eq. GJ−1 for reed and reed canary grass, respectively.


Sign in / Sign up

Export Citation Format

Share Document