scholarly journals Potensi Tepung Magot Black Soldier Fly (Hermetia illucens) sebagai Agen Antibakteri dan Immunomodulator Pakan Ternak Unggas secara In vitro

2021 ◽  
Vol 39 (2) ◽  
pp. 112
Author(s):  
Desy Cahya Widianingrum ◽  
Melinda Erdya Krismaputri ◽  
Listya Purnamasari

Tepung Magot dalam pakan unggas tidak hanya dapat digunakan sebagai alternatif sumber protein namun juga diharapkan memiliki efek antibakterial dan immunomodulator. Penelitian ini menggunakan metode in vitro untuk mengetahui efek antimikrobial dan immunomodulator tepung magot. Uji sensitivitas dilakukan dengan metode disc difusi agar, uji aktivitas fagositosis diamati pada makrofag peritoneum mencit Balb-C jantan berumur 8 minggu terhadap Staphylococcus aureus (S. aureus), serta uji tantang S. aureus terhadap tepung magot dilihat di bawah scanning electron microscopy (SEM). Data hasil uji sensitivitas dan pengamatan dengan teknik SEM dilaporkan secara deskriptif. Perbedaan aktivitas fagositosis makrofag antar perlakuan diuji dengan analisis varian satu arah dengan uji lanjut honestly significant difference (HSD) Berdasar hasil penelitian diketahui bahwa tepung memiliki 38,22% kandungan protein dengan profil asam amino yang lengkap. Kandungan asam amino tertinggi pada tepung magot adalah (7685,84 mg/kg), aspartat (5864,19 mg/kg), leusin (5034,31 mg/kg). Asam lemak esensial yang terkandung pada tepung magot adalah asam laurat (13,39%) Hasil uji sensitivitas diketahui tepung magot tidak memberikan zona hambat pada bakteri S. aureus. Introduksi tepung magot pada fagositosis secara in vitro dapat meningkatkan kinerja makrofag dengan perannya seperti opsonin berdasar pengamatan SEM. Kesimpulan dari penelitian ini adalah tepung magot potensial digunakan sebagai imunomodulator natural dan pengganti protein pakan unggas.

2017 ◽  
Vol 5 (5) ◽  
pp. 664-666 ◽  
Author(s):  
Rajnish K. Singhal ◽  
Balwant Rai

BACKGROUND: Different formulations of dentifrices exist in the market. Usually, single toothpaste is used by all family members including children. There is a big concern of fluoride ingestion with the toothpaste containing high fluoride content in children. Recently, new toothpaste (including toothpaste) with remineralization potential without fluoride content has been formulated.AIM: There is an urgent need to compare remineralization potential of this new formulation with the exiting dentifrices. Therefore, the present study has been undertaken to assess and compare the remineralization potential of three dentifrices with different compositions on artificially induced carious lesions in vitro by using scanning electron microscopy and polarised light microscopy.MATERIALS AND METHODS: The present in vitro study was conducted on 21 healthy extracted primary central incisor teeth surfaces, which were divided into three groups and were treated by three different dentifrices. Artificial demineralization was followed by remineralization using dentifrice slurry as per the group distribution. All the samples were studied for remineralization by using scanning electron microscopy and polarised light microscopy. Data were analysed using SPSS version 11 software.RESULTS: A significant difference was found between the remineralization potential of  incudent toothpaste and other toothpaste groups based on the analysis of polarised light microscopy and stereomicroscope. The remineralizing ability of  incudent toothpaste for artificial enamel lesions was found to be significantly higher than that of Colgate® and Crest toothpaste.CONCLUSIONS: The limitations of this study include, being a short term study, low sample size and in vitro experiment.  incudent toothpaste has exhibited a higher remineralizing potential as compared to fluoride based toothpaste in our study.


Author(s):  
Dayane Dotto De Moraes ◽  
Antonio Márcio Scatolini ◽  
Silvana Marina Piccoli Pugine ◽  
Luci Cristina de Oliveira Vercik ◽  
Mariza Pires de Melo ◽  
...  

Abstract A dressing material based on the combination of gelatine, chitosan and silver nanoparticles with a suitable proportion has been developed and can be successfully applied in biomedical fields. The new gelatin/chitosan membranes were prepared using the chitosan suspension mixed with gelatin and silver nanoparticles (AgNPs), resulting in a biocompatible and antibacterial product. AgNPs were obtained by the reduction of silver nitrate with chitosan solution and added to chitosan/gelatin (GCs) blend solutions to obtain membranes by the casting method. Thus, membranes with three different AgNPs concentrations were produced: 30 mM, 20 mM and 10 mM AgNPs. To evaluate the characteristics of the membranes, physicochemical and morphological tests were carried out, such as infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission (TEM), and in vitro cytotoxicity and bacterial assays. The formation of AgNPs was confirmed by Visible Ultraviolet to Ultraviolet to Visible (UV-vis) and TEM, where the nanoparticles were observed by the formation of the peak spectrum at a wavelength at 560 nm. According to the TEM images, polymorphic nanoparticles with an average size of 30 nm were obtained. Furthermore, the results of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) indicated the presence of silver evenly distributed within the membranes. The results obtained by (FTIR) showed spectral peaks characteristic of the membrane materials, that is, typical spectra of gelatin, chitosan and silver. These results could be explained by addition of free −OH, −NH2 and −NHOCOCH3 groups of the amorphous chitosan in the blends and a network structure through electrostatic interactions between the ammonium ions (−NH3+) of the chitosan and the carboxylate ions (−COO−) of the gelatin. The concentrations of AgNPs 30 mM and 20 mM in the membranes attributed to them a high hydration rate and high water vapor permeability (WVP). Membranes with 30 mM AgNPs showed bacterial effect against Staphylococcus aureus and Pseudomonas aeruginosa, concentrations of 20 mM AgNPs and 10 mM AgNPs, bacteriostatic effect against Staphylococcus aureus and bacterial effect against Pseudomonas aeruginosa. In the results of the in vitro assays, 10 mM AgNPs membranes were not cytotoxic. With the results obtained, GC membranes with up to 10 mM AgNPs are candidates for use in the fields of biomaterials and biomedicine.


2010 ◽  
Vol 138 (9-10) ◽  
pp. 551-556
Author(s):  
Tatjana Brkanic ◽  
Ivana Stojsin ◽  
Karolina Vukoje ◽  
Slavoljub Zivkovic

Introduction. Root canal preparation is the most important phase of endodontic procedure and it consists of adequate canal space cleaning and shaping. In recent years, rotary instruments and techniques have gained importance because of the great efficacy, speed and safety of the preparation procedure. Objective. The aim of this research was to investigate the influence of different NiTi files on the canal wall cleaning quality, residual dentine debris and smear layer. Methods. The research was conducted on extracted human teeth in vitro conditions. Teeth were divided in 7 main groups depending on the kind of instruments used for root canal preparation: ProTaper, GT, ProFile, K-3, FlexMaster, hand ProTaper and hand GT. Root canal preparation was accomplished by crown-down technique. Prepared samples were assessed on scanning electron microscopy JEOL, JSM-6460 LV. The evaluation of dentine debris was done with 500x magnification, and the evaluation of smear layer with 1,000 times magnification. Quantitive assessment of dentine debris and smear layer was done according to the criteria of Hulsmann. Results. The least amount of debris and smear layer has been found in canals shaped with ProFile instruments, and the largest amount in canals shaped with FlexMaster instruments. Canal cleaning efficacy of hand GT and ProTaper files has been similar to cleaning efficacy of rotary NiTi files. Statistic analysis has shown a significant difference in amount of dentine debris and smear layer on the canal walls between sample groups shaped with different instruments. Conclusion. Completely clean canals have not been found in any tested group of instruments. The largest amount of debris and smear layer has been found in the apical third of all canals. The design and the type of endodontic instruments influence the efficacy of the canal cleaning.


Author(s):  
William J. Lamoreaux ◽  
David L. Smalley ◽  
Larry M. Baddour ◽  
Alfred P. Kraus

Infections associated with the use of intravascular devices have been documented and have been reported to be related to duration of catheter usage. Recently, Eaton et al. reported that Staphylococcus epidermidis may attach to silastic catheters used in continuous ambulatory peritoneal dialysis (CAPD) treatment. The following study presents findings using scanning electron microscopy (SEM) of S. epidermidis adherence to silastic catheters in an in vitro model. In addition, sections of polyvinyl chloride (PVC) dialysis bags were also evaluated by SEM.The S. epidermidis strain RP62A which had been obtained in a previous outbreak of coagulase-negative staphylococcal sepsis at local hospitals was used in these experiments. The strain produced surface slime on exposure to glucose, whereas a nonadherent variant RP62A-NA, which was also used in these studies, failed to produce slime. Strains were grown overnight on blood agar plates at 37°C, harvested from the surface and resuspended in sterile saline (0.85%), centrifuged (3,000 rpm for 10 minutes) and then washed twice in 0.1 M phosphate-buffered saline at pH 7.0. Organisms were resuspended at a concentration of ca. 106 CFU/ml in: a) sterile unused dianeal at 4.25% dextrose, b) sterile unused dianeal at 1.5% dextrose, c) sterile used dialysate previously containing 4.25% dextrose taken from a CAPD patient, and d) sterile used dialysate previously containing 1.5% dextrose taken from a CAPD patient.


1984 ◽  
Vol 52 (02) ◽  
pp. 102-104 ◽  
Author(s):  
L J Nicholson ◽  
J M F Clarke ◽  
R M Pittilo ◽  
S J Machin ◽  
N Woolf

SummaryA technique for harvesting mesothelial cells is described. This entails collagenase digestion of omentum after which the cells can be cultured. The technique has been developed using the rat, but has also been successfully applied to human tissue. Cultured rat mesothelial cells obtained in this way have been examined by scanning electron microscopy. Rat mesothelial cells grown on plastic film have been exposed to blood in an in vitro system using a Baumgartner chamber and have been demonstrated to support blood flow. No adhering platelets were observed on the mesothelial cell surface. Fibroblasts similarily exposed to blood as a control were washed off the plastic.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


2020 ◽  
Vol 20 (24) ◽  
pp. 2186-2191
Author(s):  
Lialyz Soares Pereira André ◽  
Renata Freire Alves Pereira ◽  
Felipe Ramos Pinheiro ◽  
Aislan Cristina Rheder Fagundes Pascoal ◽  
Vitor Francisco Ferreira ◽  
...  

Background: Resistance to antimicrobial agents is a major public health problem, being Staphylococcus aureus prevalent in infections in hospital and community environments and, admittedly, related to biofilm formation in biotic and abiotic surfaces. Biofilms form a complex and structured community of microorganisms surrounded by an extracellular matrix adhering to each other and to a surface that gives them even more protection from and resistance against the action of antimicrobial agents, as well as against host defenses. Methods: Aiming to control and solve these problems, our study sought to evaluate the action of 1,2,3- triazoles against a Staphylococcus aureus isolate in planktonic and in the biofilm form, evaluating the activity of this triazole through Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. We have also performed cytotoxic evaluation and Scanning Electron Microscopy (SEM) of the biofilms under the treatment of the compound. The 1,2,3-triazole DAN 49 showed bacteriostatic and bactericidal activity (MIC and MBC 128 μg/mL). In addition, its presence interfered with the biofilm formation stage (1/2 MIC, p <0.000001) and demonstrated an effect on young preformed biofilm (2 MICs, p <0.05). Results: Scanning Electron Microscopy images showed a reduction in the cell population and the appearance of deformations on the surface of some bacteria in the biofilm under treatment with the compound. Conclusion: Therefore, it was possible to conclude the promising anti-biofilm potential of 1,2,3-triazole, demonstrating the importance of the synthesis of new compounds with biological activity.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Daniele Tognetto ◽  
Chiara De Giacinto ◽  
Alberto Armando Perrotta ◽  
Tommaso Candian ◽  
Alessandro Bova ◽  
...  

Purpose. To compare the capsule edges ultrastructure obtained by two femtosecond laser-assisted cataract surgery (FLACS) platforms and manual continuous curvilinear capsulorhexis (CCC) using scanning electron microscopy (SEM). Setting. Eye Clinic, University of Trieste, Italy. Design. Experimental comparative study. Methods. 150 anterior capsules were collected and divided into three groups as follows: Group 1 (50 capsules) obtained with manual CCC, Groups 2 and 3 (each with 50 capsules) obtained with the Catalys Laser and the LenSx Laser, respectively. All samples were imaged by means of SEM and regularity of the cut surface, and thickness of the capsule edge were evaluated and compared. Results. All femtosecond laser (FSL) capsules were perfectly circular, whereas some alteration of the circular shape was observed in the manual ones. Group 1 showed a smooth and regular capsule edge without any surface irregularity, conversely Groups 2 and 3 showed postage-stamp perforations on the capsule edge. The cut surface irregularity value in Group 2 was 1.4 ± 0.63, while it was 0.7 ± 0.49 in Group 3 (p<0.05). Group 1 had a significantly lower thickness of the capsule edge than the FSL groups (p<0.05). No statistically significant difference in the capsule edge thickness between the FSL groups was found (p=0.244). Conclusions. Despite the presence of slight cut surface irregularities, both FSL capsulotomies showed a better geometry and circularity than the manual ones. Capsulotomy specimens obtained using both FSL capsulotomies showed laser-induced alterations of the capsule edge when compared with smooth and regular edges obtained using manual CCC.


Author(s):  
Ihab Nabeel Safi ◽  
Basima Mohammed Ali Hussein ◽  
Hikmat J. Aljudy ◽  
Mustafa S. Tukmachi

Abstract Objectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates: discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electron microscopy–energy dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness (VH). Student’s t-test was used. Results All FESEM images showed a homogeneous, continuous, and crack-free HA coat with a rough surface. EDX analysis revealed inclusion of HA particles within the substrate surface in a calcium (Ca)/phosphorus (P) ratio (16.58/11.31) close to that of HA. Elemental and EDX analyses showed Ca, Ti, P, and oxygen within Ti. The FESEM views at a cross-section of the substrate showed an average of 7 µm coat thickness. Moreover, these images revealed a dense, compact, and uniform continuous adhesion between the coat layer and the substrate. Roughness result indicated highly significant difference between uncoated Ti and HA coat (p-value < 0.05). A significant improvement in the VH value was observed when coat hardness was compared with the Ti substrate hardness (p-value < 0.05). Conclusion Prolonged magnetron sputtering successfully coat Ti dental implants with HA in micrometers thickness which is well adhered essentially in excellent osseointegration.


2021 ◽  
Vol 22 (11) ◽  
pp. 5730
Author(s):  
Jomarien García-Couce ◽  
Marioly Vernhes ◽  
Nancy Bada ◽  
Lissette Agüero ◽  
Oscar Valdés ◽  
...  

Hydrogels obtained from combining different polymers are an interesting strategy for developing controlled release system platforms and tissue engineering scaffolds. In this study, the applicability of sodium alginate-g-(QCL-co-HEMA) hydrogels for these biomedical applications was evaluated. Hydrogels were synthesized by free-radical polymerization using a different concentration of the components. The hydrogels were characterized by Fourier transform-infrared spectroscopy, scanning electron microscopy, and a swelling degree. Betamethasone release as well as the in vitro cytocompatibility with chondrocytes and fibroblast cells were also evaluated. Scanning electron microscopy confirmed the porous surface morphology of the hydrogels in all cases. The swelling percent was determined at a different pH and was observed to be pH-sensitive. The controlled release behavior of betamethasone from the matrices was investigated in PBS media (pH = 7.4) and the drug was released in a controlled manner for up to 8 h. Human chondrocytes and fibroblasts were cultured on the hydrogels. The MTS assay showed that almost all hydrogels are cytocompatibles and an increase of proliferation in both cell types after one week of incubation was observed by the Live/Dead® assay. These results demonstrate that these hydrogels are attractive materials for pharmaceutical and biomedical applications due to their characteristics, their release kinetics, and biocompatibility.


Sign in / Sign up

Export Citation Format

Share Document