scholarly journals USING ESSENTIAL OILS TO COMBAT THE THREAT OF MULTI-DRUG RESISTANT BACTERIA, PSEUDOMONAS AERUGINOSA

Author(s):  
Jenies Grullon ◽  
James P. Mack ◽  
Albert Rojtman

<div class="WordSection1"><p><strong>Objective: </strong>The development of antibiotics was a revolutionary scientific discovery and medical advancement that greatly extended the life expectancy of mankind. Through less than 100 y of using antibiotics to treat infectious bacteria, some of these highly adaptive organisms have developed resistance to the drugs. The healthcare field is greatly concerned with the threat of many common infections that have been considered treatable for decades, regaining its ability to be severely fatal; thus, making alternative treatments currently in high demand. This study concentrated on investigating an alternative treatment for a specific gram-negative bacterium, <em>Pseudomonas aeruginosa (P. aeruginosa)</em>, a resistance-gaining bacteria that commonly infects hospitalized patients with weakened immune systems and/or open wounds.</p><p><strong>Methods: </strong>Prior to the age of modern medicine, human beings relied on nature for medicinal treatments. In our research, we focused on determining the <em>in vitro </em>efficacy of using the essential oils, cassia and cinnamon bark, their major component, cinnamaldehyde, as well as the major component of manuka honey, methylglyoxal, as an alternative treatment against <em>P. aeruginosa</em> We tested cassia, cinnamon bark, cinnamaldehyde, and methylglyoxal using the Kirby-Bauer disk diffusion method; the diameter of the zone of inhibition for each treated bacterial sample was measured and compared with the standard antibiotic treatments, tobramycin, and amikacin.</p><p><strong>Results: </strong>This study showed that the selected essential oils, cinnamaldehyde, and methylglyoxal were as effective or better in inhibiting the growth of <em>P. aeruginosa </em>compared to the standard aminoglycoside antibiotics.</p><p><strong>Conclusion: </strong>The tested essential oils, cinnamaldehyde, and methylglyoxal may be useful as an alternative treatment for infections caused by <em>P. aeruginosa</em> and may also provide communities where antibiotics are not readily available, a cost-effective way to treat this infectious disease.</p></div>

2021 ◽  
Author(s):  
Filippo Fratini ◽  
Margherita Giusti ◽  
Simone Mancini ◽  
Francesca Pisseri ◽  
Basma Najar ◽  
...  

AbstractStaphylococcus aureus and coagulase-negative staphylococci are among the major causes of mastitis in sheep. The main goal of this research was to determine the in vitro antibacterial activity of several essential oils (EOs, n 30), then five of them were chosen and tested alone and in blends against staphylococci isolates. Five bacteria were isolated from episodes of ovine mastitis (two S. aureus and three S. xylosus). Biochemical and molecular methods were employed to identify the isolates and disk diffusion method was performed to determine their antimicrobial-resistance profile. The relative percentage of the main constituents in the tested essential oils and their blends was detected by GC-EIMS analysis. Antibacterial and bactericidal effectiveness of essential oils and blends were evaluated through minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). All of them showed sensitivity to the used antimicrobials. The EOs with the highest antibacterial activity were those belonging to the Lamiaceae family characterized by high concentrations of thymol, carvacrol and its precursor p-cymene, together with cinnamon EO, rich in cinnamaldehyde. In terms of both MIC and MBC values, the blend composed by Thymus capitatus EO 40%, Cinnamomum zeylanicum EO 20%, Thymus serpyllum EO 20% and Satureja montana EO 20% was found to be the most effective against all the isolates. Some essential oils appear to represent, at least in vitro, a valid tool against ovine mastitis pathogens. Some blends showed a remarkable effectiveness than the single oils, highlighting a synergistic effect in relation to the phytocomplex.


Author(s):  
Erin Cieslak ◽  
James P. Mack ◽  
Albert Rojtman

<p><strong>Objective: </strong>Essential oils are of significant interest in today’s world of healthcare because these compounds have a variety of medicinal properties. In this study, we evaluated the <em>in vitro</em> antibiotic role of essential oils as a possible alternative treatment in combatting Methicillin-resistant <em>Staphylococcus aureus</em> (MRSA).</p><p><strong>Methods: </strong>In conjunction with carrier oils, three essential oils (cassia, cinnamon bark, and thyme), as well as methylglyoxal were tested on MRSA using the Kirby-Bauer disc diffusion method.</p><p><strong>Results: </strong>The minimum inhibitory concentration of each tested essential oil and methylglyoxal in carrier oil was determined to be 25% essential oil and 75% carrier oil mixture. This concentration worked much more effectively than the standard antibiotic, vancomycin, which is currently used to treat MRSA infections.</p><p><strong>Conclusion: </strong>Antibacterial emollients made from naturally occurring products like essential oils can be cost-effective alternatives to antibiotics. The results of this research show that these emollients are more effective against MRSA than standard antibiotics in cell culture.</p>


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 344
Author(s):  
Gabriele Meroni ◽  
Elena Cardin ◽  
Charlotte Rendina ◽  
Valentina Rafaela Herrera Millar ◽  
Joel Fernando Soares Filipe ◽  
...  

Essential oils (EOs) and honeybee products (e.g., honey and propolis) are natural mixtures of different volatile compounds that are frequently used in traditional medicine and for pathogen eradication. The aim of this study was to evaluate the antibacterial properties of tea tree (Melaleuca alternifolia) EO (TTEO), Rosmarinus officinalis EO (ROEO), manuka-based gel, and propolis against 23 strains of Staphylococcus pseudintermedius (SP) isolated from canine pyoderma. Antimicrobial resistance screening was assessed using a panel of nine antimicrobial agents coupled with a PCR approach. An aromatogram was done for both EOs, using the disk diffusion method. The minimum inhibitory concentration (MIC) was determined for all the compounds. Among the 23 SP strains, 14 (60.9%) were multidrug-resistant (MDR), 11 strains (47.8%) were methicillin-resistant (MRSP), and 9 (39.1%) were non-MDR. The mean diameter of the inhibition zone for Melaleuca and Rosmarinus were 24.5 ± 8.8 mm and 15.2 ± 8.9 mm, respectively, resulting as statistically different (p = 0.0006). MIC values of TTEO and ROEO were similar (7.6 ± 3.2% and 8.9 ± 2.1%, respectively) and no statistical significances were found. Honeybee products showed lower MIC compared to those of EOs, 0.22 ± 0.1% for Manuka and 0.8 ± 0.5% for propolis. These findings reveal a significant antibacterial effect for all the tested products.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1617
Author(s):  
Raouaa Maaroufi ◽  
Olfa Dziri ◽  
Linda Hadjadj ◽  
Seydina M. Diene ◽  
Jean-Marc Rolain ◽  
...  

Hospital environments constitute the main reservoir of multidrug-resistant bacteria. In this study we aimed to investigate the presence of Gram-negative bacteria in one Northwestern Tunisian hospital environment, and characterize the genes involved in bacterial resistance. A total of 152 environmental isolates were collected from various surfaces and isolated using MacConkey medium supplemented with cefotaxime or imipenem, with 81 fermenter bacteria (27 Escherichia coli, and 54 Enterobacter spp., including 46 Enterobacter cloacae), and 71 non-fermenting bacteria (69 Pseudomonas spp., including 54 Pseudomonas aeruginosa, and 2 Stenotrophomonas maltophilia) being identified by the MALDI-TOF-MS method. Antibiotic susceptibility testing was performed by disk diffusion method and E-Test was used to determine MICs for imipenem. Several genes implicated in beta-lactams resistance were characterized by PCR and sequencing. Carbapenem resistance was detected among 12 isolates; nine E. coli (blaNDM-1 (n = 8); blaNDM-1 + blaVIM-2 (n = 1)) and three P. aeruginosa were carbapenem-resistant by loss of OprD porin. The whole-genome sequencing of P. aeruginosa 97H was determined using Illumina MiSeq sequencer, typed ST285, and harbored blaOXA-494. Other genes were also detected, notably blaTEM (n = 23), blaCTX-M-1 (n = 10) and blaCTX-M-9 (n = 6). These new epidemiological data imposed new surveillance strategies and strict hygiene rules to decrease the spread of multidrug-resistant bacteria in this area.


2021 ◽  
Vol 4 (1) ◽  
pp. 56
Author(s):  
Shinta Levea Ni'matul Fadlilah ◽  
Mustofa Helmi Effendi ◽  
Wiwiek Tyasningsih ◽  
Lucia Tri Suwanti ◽  
Jola Rahmahani ◽  
...  

This study aimed to determine the in vitro antibacterial activities of essential oil from cinnamon bark (Cinnamomum burmannii) on Methicillin-resistant Staphylococcus aureus (MRSA) isolated from raw milk. Essential oil from cinnamon bark obtained from the steam distillation method and essential oil was made in a series dilution with a concentration of 1%, 2%, 4%, and 8%. The antibacterial activities were tested using the disk diffusion method. Results showed from five isolates of MRSA, one isolate was sensitive of essential oil with a concentration 2% and all of the isolate was sensitive with a concentration 4% and 8%. The antibacterial activity showed by inhibition zones on  MRSA. The results suggest that the activity of the essential oils of cinnamon bark has an antibacterial effect on MRSA and it is developed as phytopharmaca.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mohammed Dalli ◽  
Salah-eddine Azizi ◽  
Hind Benouda ◽  
Ali Azghar ◽  
Maroua Tahri ◽  
...  

Nigella sativa L. (NS) and its volatile compounds are well known for their broad spectrum of effects. This study aimed to investigate the variability of the chemical composition and the in vitro antibacterial activity of five essential oils (Eos) originated from Morocco, Saudi Arabia, Syria, India, and France. These five samples were grown under different edaphic and climatic conditions. The agar diffusion method and microdilution method in 96-well plates were used to test the sensitivity of multidrug-resistant strains clinically isolated from patients (methicillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii), for the determination of the minimum inhibitory concentration and bactericidal concentration. Among all the investigated Eos, the monoterpenes were highly present in the chemical composition. Moroccan, Saudi Arabian, and Syrian seeds were characterized by the presence α-phellandrene (20.03–30.54%), β-cymene (12.31–23.82 %), and 4−caranol (9.77–14.27%). The Indian seeds were rich with 4-caranol (18.81%), β-cymene (14.22%), α-phellandrene (10.58%), and β-chamigrene (9.54%), while France NS was rich with estragole (20.22%) and D-limonene (14.63%). The minimum inhibitory (MIC) and bactericidal concentration (MBC) obtained for the four Eos (with the exception of France because of the low yield) tested were ranging from 3 to 40 μl/ml. Gram-positive (+) bacteria were slightly sensitive to the Eos tested than the Gram-negative (−) bacteria. The results of this study showed that the Eos of NS seeds show interesting antibacterial activity which could be associated to the existence of different bioactive compounds. Indeed, these compounds can be used for preventive or curative purposes in the face of the noncontrolled emergence of resistance to antibiotics.


2017 ◽  
Vol 9 (1) ◽  
pp. 3-8
Author(s):  
Aleya Farzana ◽  
S. M. Shamsuzzaman

The increase in antibiotic resistance coincided with the decline in production of new antibiotics. Combination antibiotic treatment is preferred in nosocomial infections caused by multidrug resistant Pseudomonas aeruginosa. In vitro synergism test by agar dilution method were used to choose the combinations which might be used in clinic. The aim of this study was to investigate the synergistic efficacy of antibiotic combinations in imipenem resistant P. aeruginosa strains. Carbapenem resistance (imipenem and meropenem) wasdetermined by disk diffusion method. Among isolated P. aeruginosa 44.9% were cabapenem resistant. The MIC of drugs among 25 imipenem resistant isolates ranged from >_ 256 mg/L to <_ 8 mg/L for imipenem, >_ 1024 mg/L to <_ 64 mg/L for ceftriaxone, >_ 256 mg/L to <_ 8 mg/L for amikacin, >_ 16 mg/L to <_ 2 mg/L for colistin, >_ 512 mg/L to <_ 16 mg/L for piperacillin/tazobactam. Among antibiotic combinations, piperacillin /tazobactam- amikacin was most effective with 80% synergism next to which was imipenem-amikacin with 60% synergism, then imipenem-colistin with 50% synergism, imipenem-ceftriaxone with 30% synergism. Only one combination (piperacillin/tazobactum -imipenem showed 20% antagonism. All these combinations had considerable proportion of additive effect which is also desirable for these multi drug resistant isolates.Bangladesh J Med Microbiol 2015; 9 (1): 3-8


2014 ◽  
Vol 60 (1) ◽  
pp. 29-38
Author(s):  
Mazen Safi ◽  
Ayman Al-Mariri

Summary Medicinal plants are considered to be new resources for the production of agents that could act as alternatives to antibiotics in the treatment of antibiotic-resistant bacteria. The aim of this study was to evaluate the efficacy of some plants native to Syria in the treatment of brucellosis. In vitro activities of some essential oils and plant extracts of some medicinal plants against 89 Brucella melitensis isolates was determined by disc diffusion method at a concentration of 5%. The microdilution assay in the fluid medium was used to determine the MICs of essential oils and plant extracts. Among the evaluated herbs, only Thymus syriacus and Cinnamomum zeylanicum essential oils and Laurus nobilis plant extract showed a high activity against B. melitensis strains. Thus, minimal inhibitory concentration (MIC50) values for T. syriacus, C. zeylanicum, and L. nobilis against B. melitensis were 6.25, 3.125 and 6.25 μl/ml, respectively. Among studied essential oils and plant extracts, T. syriacus and C. zeylanicum essential oils, and L. nobilis plant extract were the most effective ones. Moreover, T. syriacus - C. zeylanicum combination was more effective than use of each of them alone. Then, T. syriacus and C. zeylanicum essential oils and L. nobilis plant extract could act as bactericidal agents against B. melitensis.


2021 ◽  
Vol 20 (6) ◽  
pp. 19-29
Author(s):  
Małgorzata Schollenberger ◽  
Agnieszka Gadomska-Gajadhur ◽  
Ewa Mirzwa-Mróz ◽  
Damian Kret ◽  
Ewa Skutnik ◽  
...  

 The activity of essential oils from Eucalyptus globulus, Pinus silvestris, Lavandula angustifolia, Juniperus virginiana, Rosmarinus officinalis and Citrus paradise against the soft-rot pathogens Pectobacterium carotovorum subsp. carotovorum, Pectobacterium atrosepticum, Pectobacterium parmentieri and Dickeya solani was determined in vitro. The antibacterial activity of the essential oils will be evaluated using the disk-diffusion method by Kirby-Bauer [Bauer et al. 1966]. It was found that all the presented essential oils varied in antimicrobial activity against the four bacterial strains. No differences in the influence of streptomycin on inhibition of growth of the four bacterial strains were observed. Among six tested plants, essential oils from P. sylvestris had the strongest inhibitory effect on the growth of soft rot bacteria from Pectobacterium genus. This paper constitute the first report on the activity of the essential oils obtained from J. virginiana against soft rot bacteria. They are also the first report on the activity of the essential oils obtained from E. globulus, P. silvestris, L. angustifolia and C. paradisi against P. atrosepticum, P. parmentieri and D. solani as well as on the activity of the R. officinalis essential oils against P. atrosepticum and P. parmentieri.


Sign in / Sign up

Export Citation Format

Share Document