scholarly journals STUDY OF ENHANCED ANTI-INFLAMMATORY POTENTIAL OF NIGELLA SATIVA IN TOPICAL NANOFORMULATION

Author(s):  
Faisal Obaid Alotaibi ◽  
Gulam Mustafa ◽  
Alka Ahuja

Objective: Formulate a nanocarrier for enhancing the anti-inflammatory activity of thymoquinone (Tq), a major active constituent of Nigella sativa.Methods: Nanoformulation of Tq was developed by low energy emulsification techniques. NanoTqs were pre-screened by different thermodynamic stability tests, followed by in vitro release, zeta potential, viscosity, the transmittance (%), globule size distribution and ex vivo studies. The morphology of the optimized NanoTq was determined by transmission electron microscopy (TEM) which revealed fairly spherical shape and good correlation with particle size distribution study. The formulation used for assessment of the anti-inflammatory potential and permeability enhancement contained mixture of essential oil of Nigella sativa: Capryol 90 (3:7, 10%, v/v), Tween 80 (21.75%, v/v), PEG 400 (7.25%, v/v) and double distilled water (61%, v/v).Results: The in vitro permeation of Tq from optimized formulations was found extremely significant (p<0.001) in comparison to apiTq. The steady state flux (Jss), the permeability coefficient (Kp) and enhancement ratio (Er) of NanoTq gel was determined and compared with apiTq. The comparative anti-inflammatory effects of the optimized formulations NanoTq, apiTq and DicloGel was assessed on the edema in the carrageenan-induced paw model in Wistar rats. Therapeutic potential of NanoTq was found statistically extremely significant (P<0.0001) compared to apiTq and insignificant comparable with standard DicloGel. Storage stability of NanoTq showed insignificant changes in the zeta potential, droplet size and was free from any physical instability.Conclusion: The optimized nano formulation with a lower dose of Tq showed better anti-inflammatory effects, indicating greater absorption capability through the stratum corneum.

2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 709 ◽  
Author(s):  
Blanca Lorenzo-Veiga ◽  
Patricia Diaz-Rodriguez ◽  
Carmen Alvarez-Lorenzo ◽  
Thorsteinn Loftsson ◽  
Hakon Hrafn Sigurdsson

The aim of this study was to design and evaluate novel cyclodextrin (CD)-based aggregate formulations to efficiently deliver nepafenac topically to the eye structure, to treat inflammation and increase nepafenac levels in the posterior segment, thus attenuating the response of inflammatory mediators. The physicochemical properties of nine aggregate formulations containing nepafenac/γ-CD/hydroxypropyl-β (HPβ)-CD complexes as well as their rheological properties, mucoadhesion, ocular irritancy, corneal and scleral permeability, and anti-inflammatory activity were investigated in detail. The results were compared with a commercially available nepafenac suspension, Nevanac® 3 mg/mL. All formulations showed microparticles, neutral pH, and negative zeta potential (–6 to –27 mV). They were non-irritating and nontoxic and showed high permeation through bovine sclera. Formulations containing carboxymethyl cellulose (CMC) showed greater anti-inflammatory activity, even higher than the commercial formulation, Nevanac® 0.3%. The optimized formulations represent an opportunity for topical instillation of drugs to the posterior segment of the eye.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1658
Author(s):  
Dalia H. Abdelkader ◽  
Ahmed Kh. Abosalha ◽  
Mohamed A. Khattab ◽  
Basmah N. Aldosari ◽  
Alanood S. Almurshedi

Atorvastatin Calcium (At-Ca) has pleiotropic effect as anti-inflammatory drug beside its main antihyperlipidemic action. Our study was conducted to modulate the anti-inflammatory effect of At-Ca to be efficiently sustained for longer time. Single oil-water emulsion solvent evaporation technique was used to fabricate At-Ca into polymeric nanoparticles (NPs). In vitro optimization survey was performed on Poly(lactide-co-glycolide) (PLGA) loaded with At-Ca regrading to particle size, polydispersity index (PDI), zeta potential, percent entrapment efficiency (% EE), surface morphology and in vitro release pattern. In vitro drug-polymers interactions were fully scanned using Fourier-Transform Infrared Spectroscopy (FTIR) and Differential Scanning calorimetry (DSC) proving that the method of fabrication is an optimal strategy maintaining the drug structure with no interaction with polymeric matrix. The optimized formula with particle size (248.2 ± 15.13 nm), PDI (0.126 ± 0.048), zeta potential (−12.41 ± 4.80 mV), % EE (87.63 ± 3.21%), initial burst (39.78 ± 6.74%) and percent cumulative release (83.63 ± 3.71%) was orally administered in Male Sprague–Dawley rats to study the sustained anti-inflammatory effect of At-Ca PLGA NPs after carrageenan induced inflammation. In vivo results demonstrate that AT-Ca NPs has a sustained effect extending for approximately three days. Additionally, the histological examination revealed that the epidermal/dermal layers restore their typical normal cellular alignment with healthy architecture.


2018 ◽  
Vol 17 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Lupe C. Espinoza ◽  
Marisol Vacacela ◽  
Beatriz Clares ◽  
Maria Luisa Garcia ◽  
Maria-Jose Fabrega ◽  
...  

Background: Donepezil (DPZ) is widely prescribed as a specific and reversible acetylcholinesterase inhibitor for the symptomatic treatment of mild to moderate Alzheimer's disease (AD). Objective: Considering the therapeutic potential of DPZ and the advantages offered by the intranasal route as an alternative for drug administration, the aim of this study was the development and characterization of a DPZ microemulsion (ME) for nose-to-brain delivery. Method: The ME was developed by construction of pseudoternary phase diagrams and characterized by dynamic light scattering and transmission electron microscopy. Flow properties and viscosity, as well as optical stability and stability under storage at different temperatures were evaluated. Finally, in vitro release and ex vivo permeation studies through porcine nasal mucosa were accomplished. Results: A transparent and homogeneous DPZ-ME (12.5 mg/ml) was obtained. The pH and viscosity were 6.38 and 44.69 mPa·s, respectively, indicating nasal irritation prevention and low viscosity. The mean droplet size was 58.9±3.2 nm with a polydispersity index of 0.19±0.04. The morphological analysis revealed the spherical shape of droplets, as well as their smooth and regular surface. Optical stability evidenced no destabilization processes. DPZ release profile indicated that the ME followed a hyperbolic kinetic model while the ex vivo permeation profile showed that the highest permeation occurred during initial 4 h and the maximum permeated amount was approximately 2000 µg, which corresponds to 80% of the starting amount of drug. Conclusion: We conclude that our nasal ME could be considered as a new potential tool for further investigation in the AD.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 577 ◽  
Author(s):  
Wafaa E. Soliman ◽  
Tamer M. Shehata ◽  
Maged E. Mohamed ◽  
Nancy S. Younis ◽  
Heba S. Elsewedy

Background: Curcumin (Cur) possesses a variety of beneficial pharmacological properties including antioxidant, antimicrobial, anti-cancer and anti-inflammatory activities. Nevertheless, the low aqueous solubility and subsequent poor bioavailability greatly limits its effectiveness. Besides, the role of myrrh oil as an essential oil in treating inflammatory disorders has been recently demonstrated. The objective of the current investigation is to enhance Cur efficacy via developing Cur nanoemulgel, which helps to improve its solubility and permeability, for transdermal delivery. Methods: The formulated preparations (Cur gel, emulgel and nanoemulgel) were evaluated for their physical appearance, spreadability, viscosity, particle size, in vitro release and ex vivo drug permeation studies. The in vivo anti-inflammatory activity was estimated using the carrageenan-induced rat hind paw edema method. Results: The formulated Cur-loaded preparations exhibited good physical characteristics that were in the acceptable range of transdermal preparations. The release of Cur from gel, emulgel and nanoemulgel after 12 h was 72.17 ± 3.76, 51.93 ± 3.81 and 62.0 ± 3.9%, respectively. Skin permeation of Cur was significantly (p < 0.05) improved when formulated into nanoemulgel since it showed the best steady state transdermal flux (SSTF) value (108.6 ± 3.8 µg/cm2·h) with the highest enhancement ratio (ER) (7.1 ± 0.2). In vivo anti-inflammatory studies proved that Cur-loaded nanoemulgel displayed the lowest percent of swelling (26.6% after 12 h). Conclusions: The obtained data confirmed the potential of the nanoemulgel dosage form and established the synergism of myrrh oil and Cur as an advanced anti-inflammatory drug.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 783
Author(s):  
Chao-Feng Mu ◽  
Fude Cui ◽  
Yong-Mei Yin ◽  
Hyun-Jong Cho ◽  
Dae-Duk Kim

Cholesteryl hemisuccinate (CHS)-conjugated chitosan (CS)-based self-assembled nanoparticles (NPs) were developed for enhancing the intracellular uptake of docetaxel in multidrug resistance (MDR)-acquired cancer cells. CHS-CS was successfully synthesized and self-aggregation, particle size, zeta potential, drug entrapment efficiency, and in vitro drug release of docetaxel-loaded CHS-CS NPs were tested. The optimized NPs had a mean hydrodynamic diameter of 303 nm, positive zeta potential of 21.3 mV, and spherical shape. The in vitro release of docetaxel from the optimized CHS-CS NPs in different pH medium (pH 6.0 and 7.4) revealed that the release was improved in a more acidic condition (pH 6.0), representing a tumor cell’s environment. The superior MDR-overcoming effect of docetaxel-loaded CHS-CS NPs, compared with docetaxel solution, was verified in anti-proliferation and cellular accumulation studies in MDR-acquired KBV20C cells. Thus, CHS-CS NPs could be potentially used for overcoming the MDR effect in anticancer drug delivery.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 64 ◽  
Author(s):  
Lupe Carolina Espinoza ◽  
Marcelle Silva-Abreu ◽  
Beatriz Clares ◽  
María José Rodríguez-Lagunas ◽  
Lyda Halbaut ◽  
...  

Donepezil (DPZ) is widely used in the treatment of Alzheimer’s disease in tablet form for oral administration. The pharmacological efficacy of this drug can be enhanced by the use of intranasal administration because this route makes bypassing the blood–brain barrier (BBB) possible. The aim of this study was to develop a nanoemulsion (NE) as well as a nanoemulsion with a combination of bioadhesion and penetration enhancing properties (PNE) in order to facilitate the transport of DPZ from nose-to-brain. Composition of NE was established using three pseudo-ternary diagrams and PNE was developed by incorporating Pluronic F-127 to the aqueous phase. Parameters such as physical properties, stability, in vitro release profile, and ex vivo permeation were determined for both formulations. The tolerability was evaluated by in vitro and in vivo models. DPZ-NE and DPZ-PNE were transparent, monophasic, homogeneous, and physically stable with droplets of nanometric size and spherical shape. DPZ-NE showed Newtonian behavior whereas a shear thinning (pseudoplastic) behavior was observed for DPZ-PNE. The release profile of both formulations followed a hyperbolic kinetic. The permeation and prediction parameters were significantly higher for DPZ-PNE, suggesting the use of polymers to be an effective strategy to improve the bioadhesion and penetration of the drug through nasal mucosa, which consequently increase its bioavailability.


2021 ◽  
Vol 11 (6) ◽  
pp. 14640-14660

Betamethasone valerate-loaded niosomes were formulated to improve drug anti-inflammatory efficacy and reduce its systemic side effects by providing prolonged and localized drug delivery into the skin. Niosomes were prepared by thin-film hydration using different molar ratios of surfactant, cholesterol, and charge inducers. Formulations were characterized for entrapment efficiency, morphology, size, and zeta potential. In-vitro release and stability studies were conducted on selected formulations. Two niosomal gels were evaluated for spreadability, pH, rheological behavior, ex-vivo skin permeation, and in-vivo anti-inflammatory efficacy. Formulations showed high encapsulation efficiency reaching 92.03±1.88%. Vesicles were spherical in shape, ranging from 123.1 to 782 nm, and had large negative values of zeta-potential. They showed a biphasic release pattern which was more sustained than free drug suspension. Niosomes demonstrated good physicochemical stability under refrigeration for up to 3 months. Niosomal gels exhibited good spreadability, suitable pH values, favorable rheological behavior, and higher skin permeation than the plain gel. In-vivo studies revealed that niosomal gels showed a better sustained anti-inflammatory effect than drug plain gel and the marketed product, which was confirmed by further histopathological examination of paw tissues. Niosomal gels are promising formulations for sustained local delivery of betamethasone valerate.


Author(s):  
Monika D. Kumbhar ◽  
Manisha S. Karpe ◽  
Vilasrao J. Kadam

Background: Eperisone hydrochloride possesses short biological half-life due to first pass metabolism resulting in low bioavailability and short duration of response with toxic effects, ultimately limits its utilization for treatment of muscle spasm. Objective: In view of this background, current study was designed for the development of Eperisone hydrochloride-loaded microemulsion and Eperisone hydrochloride-loaded microemulsion based cream for topical delivery and compared it with conventional cream. Methods: Firstly, water-in-oil microemulsion was prepared by spontaneous emulsification method. The concentration of components was found out from existence of microemulsion region by constructing pseudoternary phase diagram. The oil was selected on the basis of drug solubility effect on the drug release, whereas surfactant and cosurfactant were screened on the basis of their efficiency to form microemulsion region. The influence of components on microemulsion formation, drug release capacity, permeation was studied by differential scanning calorimetry, X-ray diffraction, in-vitro release and ex-vivo drug permeation studies respectively. By using microemulsion, the cream was prepared for proving optimum structure for topical application. Microemulsion was evaluated for droplet size, zeta potential, pH, viscosity and conductivity. Besides the cream was characterized for pH, rheology and stability. Permeation of EPE from microemulsion across the rat skin was evaluated and compared with conventional cream. Results: The microemulsion consisting Isopropyl Myristrate/Water/Span 80:Tween 80 (50/8/42% by weight) possessed droplet size of 95.77nm, zeta potential of −5.23 mV with 7.25 pH and conductivity near to zero (<0.05mScm-1). Physical parameters of the cream were satisfactory, also 2.33-fold higher permeation and 1.57-fold higher release observed as compared to conventional cream. Conclusion: It can be concluded that Eperisone hydrochloride-loaded microemulsion and its cream is being effectively used for muscle spasticity by topical route.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 219
Author(s):  
Marwa H. Abdallah ◽  
Heba S. Elsewedy ◽  
Amr S. AbuLila ◽  
Khaled Almansour ◽  
Rahamat Unissa ◽  
...  

One of the recent advancements in research is the application of natural products in developing newly effective formulations that have few drawbacks and that boost therapeutic effects. The goal of the current exploration is to investigate the effect of jojoba oil in augmenting the anti-inflammatory effect of Brucine natural alkaloid. This is first development of a formulation that applies Brucine and jojoba oil int a PEGylated liposomal emulgel proposed for topical application. Initially, various PEGylated Brucine liposomal formulations were fabricated using a thin-film hydration method. (22) Factorial design was assembled using two factors (egg Phosphatidylcholine and cholesterol concentrations) and three responses (particle size, encapsulation efficiency and in vitro release). The optimized formula was incorporated within jojoba oil emulgel. The PEGylated liposomal emulgel was inspected for its characteristics, in vitro, ex vivo and anti-inflammatory behaviors. Liposomal emulgel showed a pH of 6.63, a spreadability of 48.8 mm and a viscosity of 9310 cP. As much as 40.57% of Brucine was released after 6 h, and drug permeability exhibited a flux of 0.47 µg/cm2·h. Lastly, % of inflammation was lowered to 47.7, which was significant effect compared to other formulations. In conclusion, the anti-inflammatory influence of jojoba oil and Brucine was confirmed, supporting their integration into liposomal emulgel as a potential nanocarrier.


Sign in / Sign up

Export Citation Format

Share Document