scholarly journals A pure nodal-analysis method suitable for analog circuits using nullors

Author(s):  
E. Tlelo-Cuautle ◽  
L.A. Sarmiento-Reyes

A novel technique suitable for computer-aided analysis of analog integrated circuits (ICs) is introduced. This technique uses the features of both nodal-analysis (NA) and symbolic analysis, at nullor level. First, the nullor is used to model the ideal behavior of several analog devices, namely: transistors, opamps, OTAs, and current conveyors. From this modeling approach, it is shown how to transform circuits working in voltage-mode to current-mode and vice-versa. Second, it is demonstrated that using nullors, all non-NA-compatible elements can be transformed into NA-compatible ones, this results in a computationally-improved pure-NA method. Third, the computation of fully-symbolic expressions using MAPLEV, is described. It is demonstrated that a symbolic expression gives more insight in the behavior and performance of the circuit. Finally, several examples demonstrate the suitability and appropriateness of the proposed method to be used in education.

2015 ◽  
Vol 66 (1) ◽  
pp. 11-18
Author(s):  
Predrag B. Petrović

Abstract A new realization of RMS detector, employing two CCCIIs (controlled current conveyors), metal-oxide-semiconductor transistors and single grounded capacitor is present in this paper, without any external resistors and components matching requirements. The proposed circuit can be applied in measuring the RMS value of periodic, band-limited signals. The proposed circuit is very appropriate to further develop into integrated circuits. The errors related to the signal processing and errors bound were investigated and provided. To verify the theoretical analysis, the circuit PSpice simulations have also been included, showing good agreement with the theory.


Author(s):  
Fenglei Du ◽  
Greg Bridges ◽  
D.J. Thomson ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
...  

Abstract With the ever-increasing density and performance of integrated circuits, non-invasive, accurate, and high spatial and temporal resolution electric signal measurement instruments hold the key to performing successful diagnostics and failure analysis. Sampled electrostatic force microscopy (EFM) has the potential for such applications. It provides a noninvasive approach to measuring high frequency internal integrated circuit signals. Previous EFMs operate using a repetitive single-pulse sampling approach and are inherently subject to the signal-to-noise ratio (SNR) problems when test pattern duty cycle times become large. In this paper we present an innovative technique that uses groups of pulses to improve the SNR of sampled EFM systems. The approach can easily provide more than an order-ofmagnitude improvement to the SNR. The details of the approach are presented.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 51
Author(s):  
Amaya Osácar ◽  
Juan Bautista Echeverria Trueba ◽  
Brian Meacham

There is a trend in Europe towards increasing the quality and performance of regulations. At the same time, regulatory failure has been observed in the area of building fire safety regulation in England and elsewhere. As a result, an analysis of the appropriateness of fire safety regulations in Spain is warranted, with the objective being to assess whether a suitable level of fire safety is currently being delivered. Three basic elements must be considered in such analysis: the legal and regulatory framework, the level of fire risk/safety of buildings that is expected and the level which actually results, and a suitable method of analysis. The focus of this paper is creating a legal and regulatory framework, in particular with respect to fire safety in buildings. Components of an ”ideal” building regulatory framework to adequately control fire risk are presented, the existing building regulatory framework is summarized, and an analysis of the gaps between the ideal and the existing systems is presented. It is concluded that the gaps between the ideal and the existing framework are significant, and that the current fire safety regulations are not appropriate for assuring delivery of the intended level of fire risk mitigation.


2010 ◽  
Vol 426-427 ◽  
pp. 432-435
Author(s):  
De Gong Chang ◽  
J. Zhang ◽  
M.L. Lv

The larger variation of the construction and performance of the low-carbon steel joints was caused by the high temperature of the puddle welding of the joint. Therefore, the braze welding rather than the puddle welding was applied to the welding production of low-carbon steel. The 08 steel parts were joined in a furnace using pure copper solder paste as brazing filler metal. According to the obtained results, the ideal technical parameters are as follow: brazing temperature: 1100-1150°C; holding time: 5-10min; joint clearance: 0.03-0.05mm.


2013 ◽  
Vol 22 (09) ◽  
pp. 1340001 ◽  
Author(s):  
JIUN-WEI HORNG ◽  
TO-YAO CHIU ◽  
CHING-PAO HSIAO ◽  
GUANG-TING HUANG

A current-mode universal biquadratic filter with three input terminals and one output terminal is presented. The architecture uses two current conveyors (CCs), two grounded capacitors and two grounded resistors; and can realize all standard second-order filter functions — highpass, bandpass, lowpass, notch and allpass. Moreover, the circuit still offers the following advantage features: very low active and passive sensitivities, using of grounded capacitors and resistors which is ideal for integrated circuit implementation, without requirements for critical component matching conditions and very high output impedance. The workability of the proposed circuit has been verified via HSPICE simulations using TSMC 0.18 μm, level 49 MOSFET technology.


2021 ◽  
Author(s):  
Sagun Devshali ◽  
Ravi Raman ◽  
Sanjay Kumar Malhotra ◽  
Mahendra Prasad Yadav ◽  
Rishabh Uniyal

Abstract The paper aims to discuss various issues pertaining to gas lift system and instabilities in low producer wells along with the necessary measures for addressing those issues. The effect of various parameters such as tubing size, gas injection rate, multi-porting and gas lift valve port diameter on the performance analysis of integrated gas lift system along with the flow stability have been discussed in the paper. Field X is one of the matured offshore fields in India which has been producing for over 40 years. It is a multi-pay, heterogeneous and complex reservoir. The field is producing through six Process Complexes and more than 90% of the wells are operating on gas lift. As most of the producing wells in the field are operating on gas lift, continuous performance analysis of gas lift to optimize production is imperative to enhance or sustain production. 121 Oil wells and 7 Gas wells are producing through 18 Wellhead platforms to complex X1 of the field X. Out of these 121 oil wells, 5 are producing on self and remaining 116 with gas lift. In this paper, performance analysis of these 116 flowing gas lift wells, carried out to identify various problems which leads to sub-optimal production such as inadequate gas injection, multi-porting, CV choking, faulty GLVs etc. has been discussed. On the basis of simulation studies and analysis of findings, requisite optimization/ intervention measures proposed to improve performance of the wells have been brought out in the paper. The recommended measures predicted the liquid gain of about 1570 barrels per day (518 barrels of oil per day) and an injection gas savings in the region of about 28 million SCFD. Further, the nodal analysis carried out indicates that the aforementioned gas injection saving of 28 million SCFD would facilitate in minimizing the back pressure in the flow line network and is likely to result in an additional production gain of 350 barrels of liquid per day (65 barrels of oil per day) which adds up to a total gain of 1920 barrels of liquid per day (583 barrels of oil per day). Additionally, system/ nodal analysis has also been carried out for optimal gas allocation in the field through Integrated Production Modelling. The analysis brings out a reduction in gas injection by 46 million SCFD with likely incremental oil gain of ~100 barrels of oil per day.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1033
Author(s):  
Alessandro Nastro ◽  
Andrea De Marcellis ◽  
Marco Ferrari ◽  
Vittorio Ferrari

A Current-Mode (CM) TransImpedance Amplifier (TIA) based on Second Generation Current Conveyors (CCIIs) for capacitive microsensor measurements is presented. The designed electronic interface performs a capacitance-to-voltage conversion using 3 CCIIs and 3 resistors exploiting a synchronous-demodulation technique to improve the overall detection sensitivity and resolution of the system. A CM-TIA solution designed at transistor level in AMS0.35 µm integrated CMOS technology with a power consumption lower than 900 µW is proposed. Experimental results obtained with a board-level prototype show linear behavior of the proposed interface circuit with a resolution up to 34.5 fF and a sensitivity up to 223 mV/nF, confirming the theoretical expectations.


Sign in / Sign up

Export Citation Format

Share Document