scholarly journals Production of Cost-Effective Biodegradable Straw

Author(s):  
Priya Petchimuthu

Every year 15,342 tons of plastic waste have been produced. Among these plastic wastes, the big junk of the waste is plastic straws which are used for just a few minutes and thrown away. To prevent the plastic pollution, we need to create proper awareness. In order to avoid the pollution by plastic straws, we planned to produce a Biodegradable straw which is chemical free and an eco-friendly product. The plastic straws are harmful to human health. Our Present study focuses to produce a Biodegradable straw using eco-friendly ingredients like banana peel, cinnamon, corn starch, honey, thyme leaves and vinegar. To replace these plastic straws the bioplastic film was naturally prepared from banana peel with some chemical free ingredients. According to the study of bioplastic, banana peel has the ability to produce bioplastic film which is best alternative of plastic use. Also, vinegar can degrade the starch. And study about cinnamon shows that cinnamon can prolong the shelf life of the bioplastic film and it banishes the smell of vinegar. The flexibility of the bioplastic film can be attained by the thyme leaves in addition it also has an antifungal property. Honey acts as a plasticizer to make the material softer and more flexible and also it has antimicrobial activity. An application of heat brings polymerization from these mixtures. Thus, the bio plastic replaces the petroleum-based plastic with something made from food waste or agricultural by-products.

10.5219/1079 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 308-313
Author(s):  
Elena Alexandrovna Kotenkova ◽  
Ekaterina Polishchuk

The slaughter of farm animals generates a large number of by-products. Meat waste management includes various methods, but cost-effective technologies are still in priority. This manuscript reports the results of the study of antimicrobial activity of substances isolated from such wastes of meat processing industry as bovine and pork mucous membranes and epithelial tissues. Proteomic study included two-dimensional electrophoresis with following mass spectrometric identification. Antimicrobial activity against L. monocytogenes, P. aeruginosa and S. aureus of neutralized native extracts and after enzymatic treatment as well as its ultrafiltrates was determined by flow cytometry with EvaGreen and PI dyes. It was shown that a large number of histones were found in bovine mucous membranes as well as several tissue-specific proteins, which would be a precursor of bioactive peptides. Bovine mucous membranes of the tongue and nasal cavity possessed the greatest activity in relation to P. aeruginosa, the rate of surviving cells decreased to 22.0%. Bovine mucous membranes of the rectum and the oral cavity, submandibular lymph nodes, pig mucous membranes of the larynx, tongue, lips, and rectum increased dead cells count up to 40% of all cells. Bovine nasal mucosa and pork mucous of labial cavity possessed the greatest activity against S. aureus, the rate of surviving cells did not exceed 10.0%. Determination of antimicrobial action against L. monocytogenes of native samples and treated with trypsin showed that bovine mucous membranes of the rectum and oral cavity, pork mucosa of the lips and submandibular glands were the most active. Treatment with trypsin or ultrafiltration demonstrated different effects on activity of samples. It was shown the perspectivity of recycling of such type of by-products into effective and demanded substances which can be used, for example, in the food industry as an alternative to chemical preservatives.


2021 ◽  
Vol 13 (15) ◽  
pp. 8345
Author(s):  
Kieran Magee ◽  
Joe Halstead ◽  
Richard Small ◽  
Iain Young

One third of food produced globally is wasted. Disposal of this waste is costly and is an example of poor resource management in the face of elevated environmental concerns and increasing food demand. Providing this waste as feedstock for black soldier fly (Hermetia illucens) larvae (BSFL) has the potential for bio-conversion and valorisation by production of useful feed materials and fertilisers. We raised BSFL under optimal conditions (28 °C and 70% relative humidity) on seven UK pre-consumer food waste-stream materials: fish trimmings, sugar-beet pulp, bakery waste, fruit and vegetable waste, cheese waste, fish feed waste and brewer’s grains and yeast. The nutritional quality of the resulting BSFL meals and frass fertiliser were then analysed. In all cases, the volume of waste was reduced (37–79%) and meals containing high quality protein and lipid sources (44.1 ± 4.57% and 35.4 ± 4.12%, respectively) and frass with an NPK of 4.9-2.6-1.7 were produced. This shows the potential value of BSFL as a bio-convertor for the effective management of food waste.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4545
Author(s):  
Sudharsan Sadhasivam ◽  
Omer Barda ◽  
Varda Zakin ◽  
Ram Reifen ◽  
Edward Sionov

Patulin (PAT) and citrinin (CTN) are the most common mycotoxins produced by Penicillium and Aspergillus species and are often associated with fruits and fruit by-products. Hence, simple and reliable methods for monitoring these toxins in foodstuffs are required for regular quality assessment. In this study, we aimed to establish a cost-effective method for detection and quantification of PAT and CTN in pome fruits, such as apples and pears, using high-performance liquid chromatography (HPLC) coupled with spectroscopic detectors without the need for any clean-up steps. The method showed good performance in the analysis of these mycotoxins in apple and pear fruit samples with recovery ranges of 55–97% for PAT and 84–101% for CTN, respectively. The limits of detection (LOD) of PAT and CTN in fruits were 0.006 µg/g and 0.001 µg/g, while their limits of quantification (LOQ) were 0.018 µg/g and 0.003 µg/g, respectively. The present findings indicate that the newly developed HPLC method provides rapid and accurate detection of PAT and CTN in fruits.


Author(s):  
Patrizia Cinelli ◽  
Maurizia Seggiani ◽  
Maria Beatrice Coltelli ◽  
Serena Danti ◽  
Maria Cristina Righetti ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3491
Author(s):  
Grażyna B. Dąbrowska ◽  
Zuzanna Garstecka ◽  
Ewa Olewnik-Kruszkowska ◽  
Grażyna Szczepańska ◽  
Maciej Ostrowski ◽  
...  

Plastic pollution is one of the crucial global challenges nowadays, and biodegradation is a promising approach to manage plastic waste in an environment-friendly and cost-effective way. In this study we identified the strain of fungus Trichoderma viride GZ1, which was characterized by particularly high pectinolytic activity. Using differential scanning calorimetry, Fourier-transform infrared spectroscopy techniques, and viscosity measurements we showed that three-month incubation of polylactide and polyethylene terephthalate in the presence of the fungus lead to significant changes of the surface of polylactide. Further, to gain insight into molecular mechanisms underneath the biodegradation process, western blot hybridization was used to show that in the presence of poly(ethylene terephthalate) (PET) in laboratory conditions the fungus produced hydrophobin proteins. The mycelium adhered to the plastic surface, which was confirmed by scanning electron microscopy, possibly due to the presence of hydrophobins. Further, using atomic force microscopy we demonstrated for the first time the formation of hydrophobin film on the surface of aliphatic polylactide (PLA) and PET by T. viride GZ1. This is the first stage of research that will be continued under environmental conditions, potentially leading to a practical application.


2020 ◽  
Vol 13 (1) ◽  
pp. 210
Author(s):  
Carlos Martin-Rios ◽  
Anastasia Hofmann ◽  
Naomi Mackenzie

Food is essential to our survival, yet the Food and Agriculture Organization of the United Nations (FAO) estimates that about 820 million people were undernourished in 2018. In this context, food waste generation is a particularly salient issue. Wasting food means missing opportunities to feed the growing world population and consuming scarce resources, such as land, water and energy used in the production, processing, distribution and consumption of food. Firms in HORECA (hospitality, restaurant and catering) represent a considerable share of total food waste and, more importantly, are characterized by an overall low sense of awareness about the sustainability-oriented innovation opportunities and challenges of minimizing food waste. This article draws on an in-depth case study to explore the use of technological advancements in downstream value chain. This case study draws on a tech startup providing services for HORECA companies to address a new way for companies to solve the food waste challenge. Adopting technological innovations to quantify and minimize wastage via collaborations with third-party companies can be a strategic and cost-effective way to supplement a company’s open innovation activities.


2018 ◽  
Vol 31 (3) ◽  
pp. 1565-1571 ◽  
Author(s):  
Stephan S. W. Ende ◽  
Anja Noke

2020 ◽  
Vol 42 (10) ◽  
pp. 463-471
Author(s):  
Chul-Hwan Kim ◽  
Kwanyoung Ko ◽  
Jongkeun Lee ◽  
Haegeun Chung

Objectives : Black soldier fly larvae (BSFL) are organisms that effectively decompose various types of organic waste including food waste, and food waste treatment using BSFL is attracting attention as a sustainable waste treatment method. However, food waste discharged from Korea has a wide variety of properties, and its high salt concentration limits its treatment by BSFL. Therefore, to increase the efficiency of food waste treatment using BSFL, it is necessary to increase the quality of food waste as a production medium for BSFL. In this study, the ratio of protein and fat was adjusted by adding bean sprouts and wheat brans to food wastes treated at high temperature under vacuum, and whether such medium is suitable for rearing BSFL was investigated.Methods : To improve the medium, the ratio of protein and fat was adjusted to approximately 2:1 by adding bean sprouts and bran residue to food waste. Subsequently, the growth and development rate of BSFL reared on chicken feed, food waste, food waste + bean sprouts, food waste + wheat bran were measured. Also, the decomposition rate of each medium was analyzed.Results and Discussion : The growth rate of BSFL grown on food waste + wheat bran medium was similar to that of BSFL reared on chicken feed. The speed of development at day 7 was also the fastest for BSFL reared with food waste + wheat bran medium and chicken feed. These results suggest that the mixed medium to which wheat bran has been added to food waste has the potential to be used as a commercial medium for BSFL production. The survival rate of BSFL was 89% or higher in all media.Conclusions : When food waste was used alone, BSFL development was poor compared to that in media combined with agricultural by-products such as bean sprouts and wheat bran. Therefore, to use food waste as a rearing medium of BSFL, it is necessary to adjust the ratio of protein and fat by adding various agricultural by-products and reduce salinity. For the improvement of food waste treatment technology using BSFL, mass rearing of useful insects such as BSFL, and promotion of the use of agricultural by-products, additional research is needed to optimize the composition of rearing medium based on food waste.


Author(s):  
Kulyash Meiramkulova ◽  
Gulmira Adilbektegi ◽  
Galym Baituk ◽  
Aigul Kurmanbayeva ◽  
Anuarbek Kakabayev ◽  
...  

Waste recovery is an important aspect towards human and environmental health protection. Unfortunately, proper food waste management is among the serious challenges in the field of solid waste management worldwide. Therefore, it is of great importance to conduct studies towards achieving efficient and cost-effective approaches for food waste management. This study investigated the potential of recovering food waste through maggots’ production as animal feed. The influence of fly attractant application on maggot production was also investigated. The study also investigated the potential of maggot production for waste recovery and reduction. Four different types of food waste (starch food leftovers, rotten bananas and peels, rotten pineapple and peels, and rotten oranges) were used in the investigation process. From the results, it was observed that the application of fly attractants had a significant effect on the production of maggots as determined by the weights after harvesting. Average weight of 94 g/kg of maggot was achieved from banana materials with an application of fly attractant during the 8th day of the cultivation; which is equivalent to a 32.4% increase from the same day when the material was cultured without applying fly attractant. Also, from the starch materials, about 77 g/kg of maggot weight was achieved; which is a 54.6% increase from the same day and the same material but without application of fly attractant. Moreover, the relative dry weight reduction in the trials varied from 52.5% to 82.4%.


Sign in / Sign up

Export Citation Format

Share Document